快速原型设计和测试是早期技术研发中常见的迭代设计的关键推动因素。在尘土飞扬的环境中进行测试对于准备低温磁耦合器进行月球操作至关重要。为了能够对尘土缓解概念进行早期和迭代测试,美国国家航空航天局 (NASA) 阿姆斯特朗飞行研究中心 (加利福尼亚州爱德华兹) 开发了一种低成本、低保真度的代表性月球风化层环境。基于对该测试装置的初步测试,类似的装置可能会引起大学和其他实体的兴趣,这些实体希望开发使用月球风化层模拟物安全测试相对小规模组件的能力。本文介绍了该月球风化层测试室的开发和初步测试的结果。还讨论了进一步的开发策略,以潜在地改进该装置。
摩托罗拉是美国最大的电子产品制造商。摩托罗拉军用电子部门的西部中心占地超过 300,000 平方英尺,拥有 1000 多名专业工程人员,主要开发和生产航空航天电信产品。电信实验室是西部中心最大的研发工程设施,包括专门从事数据传输系统应用、射频系统、连续波发射应答器和指挥系统的专业技术部门。相关设施包括天线和微波、雷达系统实验室、高级可靠性和组件分析以及专门用于航空航天和相关电子产品的大型制造设施。经验
LSIC 通过每两年一次的会议、每月一次的 LSII 能力焦点小组会议和专题研讨会,与来自 50 个州、华盛顿特区、关岛、波多黎各和 46 个国家的工业界、学术界和其他政府机构建立了联系。
加拿大月球探索加速器计划 (LEAP) 探测车任务 (LRM):探索、收集、克服和启发。CE. Morisset 1、M. Picard 1 和 F. Moroso 1,1 加拿大航天局,6767 Route de l'Aéroport,St. Hubert,QC,J3Y 8Y9,加拿大(caroline-emmanuelle.morisset@asc-csa.gc.ca、martin.picard@asc- csa.gc.ca、franco.moroso@asc-csa.gc.ca)。简介:2019 年,加拿大政府宣布了一项新的月球探索加速器计划 (LEAP),将在五年内投资 1.5 亿美元。其目的是通过在月球轨道、月球表面或更远的深空提供技术开发、科学和任务机会,扩大加拿大的太空部门,特别是中小型企业,并为未来的探索任务做好准备。月球车任务(LRM)是 LEAP 的一部分,旨在开发与月球机动系统和月球表面科学研究相关的空间技术。LRM 的主要重点将主要是用作加拿大工业和学术界未来月球车任务能力的前馈演示,此外还将进行机会性科学研究和促进公众参与。任务摘要:该任务将包括在未来 5 年内将一个 30 公斤级的月球车(包括有效载荷)着陆在月球南极,以展示关键技术并完成有意义的月球科学研究。将容纳至少两个科学有效载荷:一个加拿大的,一个美国的。科学目标将与一个或所有 LEAP 科学主题保持一致:(1)了解你的环境; (2) 资源勘探;(3) 宇航员的安全和健康。该探测器将通过商业月球有效载荷服务 (CLPS) 计划与美国国家航空航天局合作运送到月球表面。
自诞生以来,航天工业一直在加速技术发展。它促使无数创新被采用并最终进入人们的日常生活。它在理解生命本身及其生存所必需的环境方面也发挥了重要作用。要进一步了解人类在宇宙中的地位,关键的一步就是真正理解月球及其奥秘。为了做到前面提到的,载人月球研究行动是必要的。然而,由于将材料和设备发射到太空的复杂性和成本,做到这一点需要采用现场资源利用 (ISRU) 方法。月球拥有大量宝贵的资源,可以从中提取几种关键物质和材料,例如氧气和氢气。为了利用当地可用的资源,如风化层,需要采用标准化方法。
5.2根据《向外层空间》(以下简称“注册公约”)的《对象注册公约》的第二条,1975年1月14日完成,当事各方应确定哪个一方应注册或(如适用),要求其政府注册其提供的航班元素。根据本文的注册,根据《太空对象造成的国际损害损害责任公约》(以下简称“责任公约”),不影响美国或日本的权利或义务,1972年3月29日。,根据第七条的条约原则条约的规定,在1967年1月27日在探索和使用外太空的探索和使用外太空中的活动的原则,包括月球和其他天体,以及注册惯例的第二条,每一方(或其政府,或其政府,适用)的任何相关律师和控制的律师,但要进行审判,但要审理的练习,旨在审议的练习,任何型的练习,此谅解备忘录,适用的IGA规定和实施安排,包括其中建立的相关程序机制。
操作概念:我们的实验将由一个生物反应器组成,该反应器有两个输入:(i)过滤后的月壤,粒径在特定范围内;(ii)初始细菌培养物(接种物)。月壤可以由机器人或人工送入浸出容器。机器人执行此操作将是一项复杂的工程任务,因为需要收集矿物颗粒(例如从着陆器伸出的机械臂)并进行筛选,而人工则可以轻松地使用勺子捡起月球尘埃,然后将其通过网格送入接收桶。我们的实验需要 80 立方厘米(<5 立方英寸)的月壤。接种物将通过将冻干的细菌培养物重新悬浮在具有适合细菌的碳源和电子源的生长培养基中来原位激活。我们目前正在 Artemis 1 任务的绕月实验中实施这种方法 [3]。实验硬件将基于 BioServe 的流体处理装置 (FPA) 和群激活包 (GAP) [4]。迄今为止,已有 5,000 多个 FPA 和 600 个 GAP 在 40 多个实验中在轨道上运行。我们目前正在初步地面研究中使用该硬件来表征模拟月球和火星重力下的细菌生长动态和基因表达 [5]。
日本正在参加网关计划,以利用通过人类空间飞行活动为国际空间站(ISS)开发的经验和技术在月球轨道上建造一个新的船员空间站,包括日本实验模块,称为“ Kibo”和货物转让车辆,HTV称为“ Kounotori”。日本负责提供居住能力,例如国际栖息地(I-HAB)对机组人员必不可少的环境控制功能,并将提供控制空气循环,气压,氧气供应,温度和湿度以及二氧化碳和有害气体的设备。此外,日本还将为门户(I-HAB和居住物流前哨基地(Halo)),i-Hab内外的摄像机提供电池,以及用于循环制冷剂的泵到凉爽的I-HAB设备。
真空:月球外层由惰性气体和其他原子和分子组成,这些气体和分子从月球内部释放,源自太阳风,或由陨石和彗星尘埃形成 [4, 5]。必须考虑飞行硬件的构造所用的材料及其各自的排气特性。月球表面系统的硬件选择应遵循 NASA 热真空稳定性指南。该模块提供了此信息的资源和数据库,例如材料和工艺技术信息系统 (MAPTIS),它提供了测试材料的排气特性和热真空稳定性等级 [6]。
本文研究了一种可能的解决方案,以采购未来太空探索任务所需的推进剂。这项研究检查了使用电磁发射器(EML)将用于推进剂生产的原材料从月球南极到NASA的Lunar Gateway的可行性。这个提议的空间站位于近汇度光环轨道(NRHO)的月球中,是NASA ARTEMIS计划的关键部分。便宜有效地从表面冰上采购月球氢将使该计划的成功和未来对太阳系的探索有益。本研究调查了月球EML有效载荷的发射要求。Agi Inc.的系统工具套件(STK)用于计算拦截网关所需的启动方位角,高度,幅度,时期和行程持续时间。该模型评估了有效载荷以及网关的径向,交叉轨道和轨道位置和速率,以确定它们在集合处的相对位置和速度。这项研究的结论表明,从Lunar South Pole进行一次发射是可行的,并以可变的发射条件为目标。提出了支持我们假设的证据,这表明可能无法与Rendezvous的空间站的状态向量相匹配。有效载荷将需要额外的推力能力,本文还探讨了这些建议。