照明:系统看到缩放高度后的性能会增加。对于沙克尔顿火山口,当部署的长度超过100 m时,土地的平方面积连续照明增加,黑暗中的周期大幅下降(图2)。大部分火山口边缘被照亮,> 80%的月球进动周期,某些位置> 95%(〜18。6年)[1] [2]。如果在这些地点部署,LunarSaber将为操作和Lunar Night night生存能力提供几乎连续的动力。尽管发电不会满足,因为它只会照亮太阳能电池板组件的顶部,但它将允许自我生存的功率冗余,并可以将功率驱动到其他资产。在黑暗中短时间内,系统底部的电池尺寸适当以生存并为其他月球资产提供电力。由于这些区域的照明是确定性的,并且经过充分研究,因此可以优化任务体系结构,以在这些事件发生之前重新充电和存储能量。
摘要:本研究的目标是定义一个通过无线电力传输为月球表面提供电力的月球轨道系统。为了满足月球基地的电力需求,需要使用放置在稳定轨道上的卫星群。该卫星群的每颗卫星都由太阳能电池阵列和电池组成,为电力传输系统供电。该系统由激光器组成,可将电力传输到月球表面的接收器。接收器是光子能量转换器,是针对激光单色光优化的光伏电池。这项工作的成果将通过研究不同的轨道涵盖系统的架构,特别是分析一些子系统,例如激光器、电池组和放置在月球地面上的接收器。这项研究考虑了两种不同的能源需求,因此考虑了两种不同的接收器位置:首先,在阿尔特弥斯任务着陆点的战略位置,即月球南极附近的沙克尔顿陨石坑;其次,在月球赤道上,为未来和新的探索做准备。目标是评估满足月球基地所需功率的可能配置,估计约为 100 kW。为此,分析了几种情况:三种不同的轨道,一种是极地轨道,一种是冰冻轨道,一种是赤道轨道(地球-月球远距离逆行轨道),卫星数量不同,接收器的传输锥角也不同。本文的主要目的是对上述系统进行全面的可行性研究,特别强调选定的子系统。虽然简要介绍和讨论了热控制、激光瞄准和姿态控制子系统,但还需要进一步研究以深入研究这些领域,并更全面地了解它们在系统中的实施和性能。
价值链:“月球商会” • 价值链开发和分析将有利于我们重返月球并延长在月球上的停留时间。 • 作为 LSIC/LSII 工作的一部分,我们目前正在开发一种“价值链工具”,该工具将充当月球商会。 • 目标:通过以下方式最大限度地提高效率:沟通交流;伙伴关系发展;资源分配;具有成本效益的解决方案。 • 该工具将使月球社区的成员能够:
其发展。太空实体,例如太空运输基础设施和技术的提供商或太空设备制造商,将从对空间能力和服务的需求激增中获利。这种需求不仅会受到月球经济活动的增加的刺激,而且还会受到自给自足的月球经济所释放和创造的未来机会的刺激,例如对其他星球进行更深层太空探索的市场。非太空实体是月球经济运作的不太明显的受益者;然而,他们仍然会从其增长中受益匪浅。这些与太空技术有着新兴联系的地面行业(采矿、汽车和建筑公司)可能构成月球经济的驱动生态系统,因为它们成为太空溢出效应的下游受益者
近五十年后,人类计划重返月球,建立殖民地。这个殖民地可以完成几项重要的科学研究和突破,但月球殖民地也有可能收获月球的自然资源。本文扩展了由杰拉德·奥尼尔博士领导的 NASA 科学家团队所做的工作,他们设计了一种月球质量驱动器,能够将收获的月球资源运回地球。具体来说,本文重点介绍了使质量驱动器发挥作用的通信、热和电源子系统的设计。本文还利用受限圆形平面三体问题方法研究了质量驱动器的潜在轨迹。设计和轨迹分析是使用 MATLAB 和《太空任务分析与设计》中概述的技术进行的。结果是子系统使月球质量驱动器能够将 100,000 公吨的月球物质从月球转移到低地球轨道,任务寿命为 20 年。
• SNAP-3 RTG 为地球轨道运行的 Transit 4A 提供动力(1961 年;Pu 238 ) • 苏联月球车利用放射性同位素热源(1969-1077;Po 210 ) • SNAP-27 RTG 为 ALSEP 提供动力(阿波罗 12-17;Pu 238 ) • 各种 SNAP-19 RTG 为先锋号和维京号探测器提供动力(Pu 238 ) • MHW-RTG 为航海者 1 号和 2 号提供动力(1977 年,Pu 238 ) • GPHS-RTG 为伽利略号(1989 年)、卡西尼-惠更斯号(1997 年)、尤利西斯号(1990 年)和新视野号(2006 年)提供动力;所有 Pu 238
行业:• 希望招标背后有更多理由——努力定义与行业相关的指标 • 需要长期承诺才能取得重大转化技术胜利 • 参与其中,甚至在实现自给自足的月球经济之前
材料。然而,对月球中气体挥发物的准确描述非常重要,但很困难。理论上,在低压条件下的全周期挥发物流动的描述需要
- 地面软件和人员没有为持续的故障排除做好准备 - DSN 联系时间和团队开发和 V&V 序列的时间有限 - 自动进行脱饱和机动的 BCT 软件的动量约束和限制 - 使用 ACS 遥测和多普勒排列多普勒/动量/热响应以查看动量变化并计算产生的推力 • 飞行测试活动非常全面,包括加热、占空比、压力、阀门驱动等。