新一代测序 (NGS) 的进步使得人们能够生成人类遗传变异的深度目录,并发现了大量与疾病相关的变异。大多数 NGS 应用都集中在单核苷酸多态性 (SNP) 或短插入和缺失 (indel) 上。串联重复是遗传变异的另一个丰富来源,由于难以获得准确的基因型,因此在很大程度上被忽视了。在这里,我们主要关注重复单元长度为 1-6 bp 的短串联重复 (STR)。总的来说,STR 占人类基因组的约 3%,超过整个蛋白质编码外显子组 [1]。STR 在基因调控区富集 ([2],[3]),重复拷贝数的变化可以通过多种机制影响基因调控,包括修改转录因子结合位点、改变 DNA 甲基化模式 [4] 或其他方式。 STR 中重复单元数量的大幅增加与数十种疾病 [5] 有关,例如亨廷顿氏病 [6] 和脆性 X 综合征 [7],而较温和的逐步变化与包括血液和脂质生物标志物在内的复杂性状有关 ([8], [9])。STR 还被用作癌症研究中诊断的遗传标记,并在多种癌症中发挥作用,包括结直肠癌 [10] 和乳腺癌 [11]。
机器学习 (ML)、深度学习 (DL) 和人工智能 (AI) 在骨科和其他医学领域越来越普遍。人工智能于 1955 年被定义为“制造智能机器的科学和工程”,其中智能是“学习并执行适当技术以解决问题和实现目标的能力,适合不确定、不断变化的世界中的情况”(Manning 2020)。机器学习意味着从数据中学习而不是遵循明确规则的模型和算法。深度学习 (DL) 是一种使用大型多层人工神经网络的 ML 形式。神经网络是受生物网络影响的信息处理计算算法。它们由多层进行通信的“神经元”组成。通过训练神经元如何通信,可以产生解决特定问题的交互。DL 是目前最成功和最通用的 ML 方法(Michie 等人 1994,Manning 2020)。计算硬件(如专用图形处理器 [GPU] 和云计算)方面的最新技术突破
机器学习 (ML)、深度学习 (DL) 和人工智能 (AI) 在骨科和其他医学领域变得越来越普遍。人工智能于 1955 年被定义为“制造智能机器的科学与工程”,其中智能是“学习并执行适当技术以解决问题和实现目标的能力,适合不确定、不断变化的世界中的情况”(Manning 2020)。机器学习意味着从数据中学习而不是遵循明确规则的模型和算法。深度学习 (DL) 是一种使用大型多层人工神经网络的 ML 形式。神经网络是受生物网络影响的信息处理计算算法。它们由多层进行通信的“神经元”组成。通过训练神经元如何通信,可以产生解决特定问题的相互作用。DL 是目前最成功和最通用的 ML 方法(Michie 等人1994 年,Manning 2020 年)。计算硬件方面的最新技术突破(如专用图形处理器 [GPU] 和云