戈谢病 (GD) 是一种罕见的遗传性溶酶体贮积症,由 β-葡萄糖脑苷脂酶 (GCase) 缺乏引起。这种缺乏会导致巨噬细胞中底物葡萄糖神经酰胺 (GlcCer) 的积累,最终导致各种并发症。在其三种类型中,GD2 尤为严重,神经系统受累。目前的治疗方法,例如酶替代疗法 (ERT),对 GD2 和 GD3 无效,因为它们无法穿过血脑屏障 (BBB)。其他治疗方法,例如基因或伴侣疗法仍处于实验阶段。此外,GD 治疗费用昂贵,并且可能有一定的副作用。2020 年,基于信使 RNA (mRNA) 的 COVID-19 疫苗的成功使用引发了人们对基于核酸的疗法的兴趣。值得注意的是,mRNA 技术还为蛋白质替代提供了一种新方法。此外,自扩增 RNA (saRNA) 技术显示出良好的前景,有可能以较低的剂量产生更多的蛋白质。本综述旨在探索一种经济有效的基于 mRNA/saRNA 的 GD 治疗方法的潜力。使用 GCase-mRNA/saRNA 作为蛋白质替代疗法可以为改善生活质量和延长 GD 患者的寿命提供一个新且有希望的方向。
控制细胞的迁移并影响肿瘤免疫微环境的组成(4)。一些趋化因子,例如CXCL9,CXCL10,CXCL11,CXCL16,促进了一种免疫抑制环境,可改善直流活化并将T细胞转移到肿瘤上(4,5)。相反,CCL2,CCL5,CXCL1,CXCL8和CXCL12可以通过RT诱导,并且具有募集抑制性免疫细胞和抑制效应T细胞的相反作用,并且通常与治疗结果不良相关(6-8)。鳞状细胞癌抗原1(SCCA1),由serpinb3基因基因座编码,现在称为serpinb3,是一种高度保守的半胱氨酸蛋白酶抑制剂,与溶酶体泄漏后与溶酶体蛋白酶相互作用并防止细胞死亡(9)。我们最近证明了Serpinb3还通过预防溶酶体诱导的RT诱导的细胞死亡来保护神经肿瘤细胞(10)。在许多癌症中,serpinb3/scca(用于测量循环serpinb3的基于Eli-sa的临床测定仍称为“ SCCA”)在肿瘤或癌症患者的循环中高度表达
雷帕霉素复合物1(MTORC1)的机械靶标是在真核生物中广泛发现的多蛋白质复合物。它通过感应各种细胞外和细胞内输入(包括氨基酸 - ,生长因子 - ,葡萄糖和与核苷酸相关的信号)来作为中心信号节点来协调细胞生长和代谢。有充分的文献证明,MTORC1被募集到溶酶体表面,在该表面被激活,因此调节了与调节蛋白质,脂质和葡萄糖代谢有关的下游效应。mTORC1是协调各种组织中养分和能量的储存和动员的中心节点。然而,新兴的证据表明,营养疾病引起的MTORC1过度激活导致发生多种代谢疾病,包括肥胖和2型糖尿病,以及癌症,神经退行性疾病疾病以及衰老。MTORC1途径在调节代谢疾病的发生中起着至关重要的作用,这是发展有效治疗策略的主要目标。在这里,我们关注的是对MTORC1如何整合代谢输入以及MTORC1在调节营养和代谢疾病调节中的作用的最新进展。Adv Nutr 2022; 13:1882–1900。
NOD 样受体家族含吡啶结构域 3 (NLRP3) 炎症小体是一种寡聚复合物,可响应病原体感染的外源信号和非微生物来源的内源性危险信号而组装。当 NLRP3 炎症小体组装激活 caspase-1 时,它会促进炎症细胞因子白细胞介素-1B 和 IL-18 的成熟和释放。NLRP3 炎症小体的异常激活与各种疾病有关,包括慢性炎症、代谢和心血管疾病。NLRP3 炎症小体可以通过几种主要机制激活,包括 K + 外排、溶酶体损伤和线粒体活性氧的产生。有趣的是,代谢危险信号会激活 NLRP3 炎症小体以诱发代谢疾病。 NLRP3 包含三个关键结构域:N 端吡啶结构域、中央核苷酸结合结构域和 C 端富含亮氨酸重复结构域。蛋白质-蛋白质相互作用充当“踏板或刹车”,控制 NLRP3 炎症小体的激活。在这篇综述中,我们介绍了代谢危险信号诱导后或通过与 NLRP3 的蛋白质-蛋白质相互作用(可能发生在代谢疾病中)激活 NLRP3 炎症小体的潜在机制。了解这些机制将有助于开发治疗 NLRP3 相关代谢疾病的特定抑制剂。
摘要 自噬通过多步骤的溶酶体降解途径维持营养循环和代谢稳态,并且已证明自噬可以作为肿瘤抑制因子或肿瘤促进因子,这取决于肿瘤微环境 (TME)。自噬在肿瘤发生中的双重作用导致两种相反的治疗策略,即抑制与促进。然而,由于肿瘤细胞的保护机制和缺乏特定的自噬调控策略,调节自噬已成为癌症治疗的主要考虑因素。纳米粒子 (NPs) 因其独特的性质而显示出克服这些局限性的巨大潜力。这里,我们总结了以自噬为靶向的 NPs 在有效治疗癌症方面的最新进展,并总结了相关临床和临床前研究的最新进展。对典型的自噬靶向纳米药物递送系统的总结旨在为有意探索该领域的研究人员提供参考并拓展思路。最后,我们对自噬调节在癌症治疗中的潜力进行了展望,并仔细强调了几个关键的客观问题。
蝾螈表现出极强的抗饥饿能力,这让它们能够在自然栖息地中忍受长时间的无食物状态。虽然自噬(一种涉及进化上保守的蛋白质的过程)有助于在食物匮乏的情况下生存,但它如何导致蝾螈细胞极端的抗饥饿能力仍未被探索。我们的研究使用了蝾螈物种 Pleurodeles waltl,结果表明蝾螈初级成纤维细胞在长期细胞饥饿期间保持恒定的自噬激活。与正常哺乳动物成纤维细胞不同(在急性饥饿期间自噬体形成会增加,但在长时间后会回到基线水平),蝾螈细胞在自噬开始 4 天后仍保持较高的自噬体数量,超过在营养丰富条件下观察到的水平。与营养丰富和饥饿状态下的哺乳动物细胞相比,独特的 P. waltl mTOR 直系同源物均表现出降低的溶酶体定位。然而,蝾螈细胞在饥饿条件下表现出 mTOR 底物的去磷酸化,类似于哺乳动物细胞。这些观察结果表明,蝾螈可能已经进化出一种独特的系统来平衡看似相互冲突的因素:高再生能力和饥饿期间自噬介导的生存。
1。简介果园治疗学(欧洲)有限公司(此处申请人或果园)提交的生物制品申请申请(BLA)125758 for Atidarsagene Autotemcel(OTL-200,或Lenmeldy,专有名称)。lenmeldy是一种基于细胞的基因疗法,用于治疗症状前婴儿晚期(PSLI),症状前少年(PSEJ)或早期有症状的早期少年(ESEJ)定期白细胞症(MLD)。MLD是一种罕见的常染色体隐性溶酶体储存疾病,这主要是由于芳基硫酸酯酶A(ARSA)酶缺乏。ARSA缺乏导致中央和周围神经系统中广泛的脱髓鞘,从而逐渐造成严重的神经系统障碍,并最终导致死亡。MLD亚型由症状发作时的年龄定义。婴儿晚期(LI)MLD是最严重的亚型,其特征是30个月之前的症状发作,并在5岁时发展为神经系统障碍或死亡。早期少年(EJ)MLD的特征是症状发作在30个月至7岁之间,并且在青春期内发展为神经系统障碍或死亡。患者没有MLD特定的治疗方法,并且剩下的大量未满足医疗需求。lenmeldy是一种自体造血干细胞基因疗法,其中包含源自造血茎的CD34+细胞富含细胞的种群,
摘要:将基于 mRNA 的疗法递送至围产期大脑在治疗先天性脑部疾病方面具有巨大潜力。然而,促进在此环境中核酸递送的非病毒递送平台尚未得到严格研究。在这里,我们通过脑室内 (ICV) 注射在胎儿和新生小鼠中筛选了多样化的可电离脂质纳米颗粒 (LNP) 库,并确定了一种 LNP 配方,其在围产期大脑中的功能性 mRNA 递送能力比 FDA 批准的行业标准 LNP 更强。在对性能最佳的 LNP (C3 LNP) 进行体外优化以共同递送腺嘌呤碱基编辑平台后,我们改善了新生小鼠大脑中溶酶体贮积症的生化表型,在胎儿非人类灵长类动物模型中展示了原理验证性 mRNA 脑转染,并展示了 C3 LNP 在人类患者来源的脑组织中的体外转化潜力。这些 LNP 可为宫内和产后 mRNA 治疗(包括脑内基因编辑)提供临床可转化平台。关键词:可电离脂质纳米颗粒、先天性脑病、mRNA 递送、基因编辑、胎儿基因治疗
2000年,欧盟(EU)引入了孤儿制药立法,以激励开发稀有疾病的药物。 负责评估孤儿指定申请(OD)的欧洲药品委员会委员会(COMP),在过去几年中,基因疗法领域的影响越来越多。 此处,该公司对(a)有针对性的疾病及其稀有性及其稀有性((b)为OD提出的基因治疗产品的特征,对媒介的类型和(c)提供了Sponsor的类型,针对OD的基因治疗产物的特征,(b)对od的基因治疗产物的特征进行了描述性分析。欧盟,例如亲托协助和Prime。 注意到,基因疗法是由来自不同背景的赞助商开发的。 大多数靶向的条件都是单基因,最常见的是溶酶体疾病,患病率很低。 通常,使用腺相关的病毒载体来传递转基因。 最后,赞助商并不经常使用可能支持开发的激励措施,而为此尚不清楚。2000年,欧盟(EU)引入了孤儿制药立法,以激励开发稀有疾病的药物。负责评估孤儿指定申请(OD)的欧洲药品委员会委员会(COMP),在过去几年中,基因疗法领域的影响越来越多。此处,该公司对(a)有针对性的疾病及其稀有性及其稀有性((b)为OD提出的基因治疗产品的特征,对媒介的类型和(c)提供了Sponsor的类型,针对OD的基因治疗产物的特征,(b)对od的基因治疗产物的特征进行了描述性分析。欧盟,例如亲托协助和Prime。注意到,基因疗法是由来自不同背景的赞助商开发的。大多数靶向的条件都是单基因,最常见的是溶酶体疾病,患病率很低。通常,使用腺相关的病毒载体来传递转基因。最后,赞助商并不经常使用可能支持开发的激励措施,而为此尚不清楚。
近年来,RNA 相关治疗的治疗潜力取得了巨大进步,特别是反义寡核苷酸 (ASO) 药物,导致 ASO 监管批准数量增加。在这项研究中,我们重点关注 SPL84,这是一种吸入式 ASO 药物,用于治疗肺部疾病囊性纤维化 (CF)。由于存在各种生物、物理、化学和结构障碍,肺部药物输送具有挑战性,尤其是在以细胞核为目标时。SPL84 在肺部的有效分布、细胞和细胞核的渗透以及稳定性是影响临床药物疗效的关键参数。在这项研究中,我们展示了 SPL84 在小鼠和猴子肺部的正确分布以及细胞和细胞核渗透。体内和体外研究证实了我们的吸入式 ASO 药物通过 CF 患者来源的粘液和肺溶酶体提取物的稳定性和流动性。我们的研究结果得到了有希望的临床前药理作用的支持,强调了 SPL84 作为治疗 CF 患者的有效药物的巨大潜力。此外,成功解决 SPL84 的肺部分布和特定细胞靶向问题为进一步开发 SpliSense 吸入式 ASO 药物治疗未得到满足的肺部疾病提供了巨大的机会。
