简介:Chediak-Hogashi综合征的特征是表型变化,例如部分白化病,进行性神经系统唱片,皮肤感染和易于血肿。这种情况是由溶酶体交通调节蛋白Lyst基因突变引起的,该蛋白负责中性粒细胞中巨型溶酶体的发展。目的:识别和分析与Chediak-Hogashi综合征发展有关的LYST基因相关的主要突变。方法论:选择了21种针对人类研究的文章,从而丢弃了动物实验。发现的突变是在包含:文章标题,具有突变的基因型,表型(基因表达)和Zigoity的表中组织的。结果和
科林·格雷(Colin Gray)关于海上战略的观念(与海洋有关的战略要素)在他广泛阅读的1992年著作《杠杆时代:战争中海军的战略优势》中最清楚地阐明了。他们还在1996年对查尔斯·C·卡威尔(Charles E.海上力量的历史意义及其在当代条件中的持续相关性也在《灰色后战争世界》中的海军中得到了解决:战略海力量的用途和价值,于1994年出版。他关于Mahan“(主要)权利”的结论出现在1999年出版的现代战略中。作为国防顾问的政策,(从1982年到1987年),科林·格雷(Colin Gray)也有机会看到他的思想转化为政策。
摘要。在大数据时代,有效地可视化数据对于发现过程至关重要。我们正在探索使用沉浸式虚拟现实平台对 COVID-19 大流行进行科学数据可视化。我们感兴趣的是在认知技术和人机交互领域寻找更好地理解、感知和与多维数据交互的方法。沉浸式可视化可以更好地理解和感知数据中的关系。本文介绍了一种基于 Unity 开发平台的沉浸式数据可视化工具。该数据可视化工具能够可视化美国五十个州的实时 COVID 大流行数据。与传统的桌面可视化工具相比,沉浸式可视化可以更好地理解数据,并带来更多以人为本的态势感知洞察。这项研究旨在确定虚拟现实工具中描绘的图表和条形图等图形对象如何根据分析师的心理模型开发,从而增强分析师的态势感知。我们的结果还表明,用户在使用沉浸式虚拟现实数据可视化工具时会感到更加满意,从而展示了沉浸式数据分析的潜力。
专注于对数字数据的分析和评估,以指导业务决策,并提供使用研究案例应用所获得的知识的使用。还提供了这些工具的发展以及生成AI的创新作用的看法,强调了其在公司中使用的好处和风险。获得了机器学习和深度学习的理论和实用基本技能。熟悉Python及其针对IA的特定书店。探讨了创建创新内容的生成AI的理论和实用原理。和挖掘ital的经理,数据ana ana and and and scist,软件开发器,RI,软件工程师,数据工程师的计划,负责通过工业领域中真实用例的分析和讨论进行认真评估人工智能的应用的能力> >
使用Segger的软件,公司可以从一个Chippliefer更改为另一个,哦 - 不,客户注意到这一点。企业家声称,要告别专有系统,然后转向Segger。即使更昂贵:值得访问两个供应商,麦肯锡咨询部门建议在新的Stuchips中。因为半导体制造商不再可靠地提供。“在情况放松之前,一切都会变得更糟,” Forrester-Ana-Lyst Glenn O'Donnell警告说。全世界已经静止不动了几个月,因为缺少电子组件。亚洲的承包商不再符合芯片繁荣的束缚。行业协会世界半导体贸易统计数据预计,今年的全球销售额将大约增加。
摘要:肝细胞癌(HCC)是最常见的原发性肝癌类型。在过去的几十年中,已有大量数据揭示了其致癌作用。尽管查明HCC的病因具有挑战性,但这本身可能并不是一个无法克服的问题。事实上,新分子靶点的出现已经推动了HCC的靶向治疗。与传统治疗相比,具有分子靶向作用的药物被认为是治疗HCC的最佳方法。然而,目前针对HCC患者的靶向治疗有限。在我们的工作中,我们探索了更多潜在的HCC靶向治疗基因。首先,在基因表达谱交互分析(GEPIA)和NetworkAna lyst中确定了差异表达基因(DEG)。随后,通过富集分析和PPI网络构建选择了10个关键基因。基于GEPIA和Oncomine数据库,选择了六个上调基因。通过人类蛋白质图谱数据库确认了这六个基因的高蛋白表达。此外,根据 Kaplan-Meier 绘图生物信息学,这六个基因与不良的总生存期和无进展生存期相关。此外,通过 UALCAN 确定基因表达与肿瘤分期和病理分级密切相关。更重要的是,使用 cBioPortal 确定 PTTG1、UBE2C 和 ZWINT 是抗癌药物的潜在靶点。qPCR 和蛋白质印迹分析显示后三个基因在 HCC 细胞系中表达水平较高。总之,这些发现有望为 HCC 的临床研究提供理论基础和新见解。
背景:家族性噬血细胞性淋巴组织细胞增生症 (FHLH) 是一种遗传性、危及生命的疾病。该病已确定有五种类型,此外还有以 HLH 为典型表现的先天性免疫缺陷综合征。中东地区关于此病的文献非常稀少,只有少数零散报道。方法:我们报告了过去 10 年卡塔尔 28 名被诊断患有原发性和家族性 HLH 的患者的详细人口统计学、临床和基因组数据。对卡塔尔基因组计划 (QGP) 队列中的 14,669 名卡塔尔个体中的 12 种原发性和家族性 HLH 致病基因的有害变异的等位基因频率进行了评估。结果:15 名患者获得了基因诊断,发现穿孔素 1 ( PRF1 )、UNC13D 、LYST 和 RAB27A 基因中有四种新的突变。我们在这 12 个基因中发现了 22,945 个在卡塔尔 GP 中显著富集的低/高/中等/修饰影响变异。我们患者队列中发现的 PRF1 中的 rs1271079313 变异和 RAB27A 中的 rs753966933 变异在卡塔尔 GP 中显著更为普遍,与基因组聚合数据库 (gnomAD) 数据库相比,卡塔尔人群的携带者频率较高。结论:我们在海湾地区建立了第一个原发性和家族性 HLH 登记处,并发现了在卡塔尔人群中频率较高的新型可能致病变异,可用于筛查目的。提高对原发性和家族性 HLH 的认识并在卡塔尔高度近亲繁殖人群中实施筛查活动,可以带来更全面的婚前和产前评估以及更快的诊断。
HER 动力学缓慢,而 Ni 则具有一些积极特性,例如高导电性、稳定性和相对较高的地球丰度。[1,3] 自 20 世纪 60 年代以来,人们做出了巨大努力来提高 Ni 基电催化剂的催化活性,采用了各种有希望的候选材料,例如镍的氢氧化物、二硫属元素化物、磷化物、碳化物等。[1,4] 通常,可以通过调整催化剂的形貌(例如,生产纳米线、纳米片、纳米颗粒等)来增加活性表面积,以及改善可用活性位点的固有活性(例如,通过合金化、掺杂、缺陷工程等)来增强催化活性。对于镍而言,形成合金是改变形貌和内在活性的常用策略,其中 NiCo、NiFe 和 NiMo 混合物已被鉴定为很有前途的 HER 电催化剂。[2b,4,5] 多组分合金的使用是二元体系的自然延伸,其中已经研究了三元合金,例如 CuAlNi、NiMoFe 和 NiMoW[2b,4],尽管每种金属的作用尚不完全清楚。在常见的 Ni 合金中,NiFe 混合物通常表现出更好的催化性能,特别是,在这些合金中添加 Mo 可以降低起始电位,这是由于有利的氢-金属相互作用和增加活性位点的数量。[4,6] 因此,NiFeMo 合金是最有前途的 HER 电催化剂之一,主要通过热液工艺[7]或电沉积生产。 [8] 合成技术的选择对催化剂的形貌有显著的影响,一般来说,不同的合成技术具有不同的最佳 Ni:Fe:Mo 金属比。此外,这些技术的特点是产量低、材料负载有限,使其在大规模应用中的使用变得复杂。因此,寻找一种能够生产三金属合金的可扩展技术对于氢经济的发展至关重要。溶液前体等离子喷涂 (SPPS) 是一种很有前途的技术,它有可能生产出各种具有适合作为电催化剂的特性的涂层 [9]。因此,在本研究中,我们表明,在等离子喷涂过程中使用含有 Ni、Fe 和 Mo 金属盐的液体前体
我们正站在技术进步和地缘政治转变的新时代的前沿,我很荣幸能介绍“来自北方的芯片——芬兰的半导体战略”。这份文件不仅是我们未来努力的蓝图,也是众多个人和组织集体思想和远见的证明。首先,我要衷心感谢芬兰技术工业半导体分会的每一位成员。你们的奉献和专业见解是这一战略的基石。对于众多公司和机构,无论是老牌公司还是新兴公司,你们的实践经验对于形成现实和前瞻性的方法都是无价的。特别感谢来自芬兰一流大学和 VTT 的学术合作伙伴。你们的研究和创新精神不仅指导了我们的战略,还将确保我们继续培养一种不断学习和适应不断变化的世界的文化。如果我不承认芬兰政府的关键支持,那将是我的失职。你们为营造有利于技术发展的环境而采取的政策和举措,帮助我们敢于梦想、志存高远。我们要特别感谢 TT-säätiö,他们的慷慨资助,促使我们将愿景转化为切实可行的计划。你们对芬兰半导体产业潜力的信心,一直是我们的鼓励和灵感源泉。同样,我要向 BCG 表示诚挚的谢意,感谢他们在本报告制定过程中提供的战略指导、见解和协助。你们的专业知识,对于确保我们的战略符合全球标准和实现半导体行业增长的雄心至关重要。这份战略报告只是一个开始。我邀请所有利益相关者,从行业资深人士到有抱负的创新者,加入我们实施这一战略的征程。你们的参与和合作,对于将这些计划转化为行动,塑造芬兰乃至其他地区半导体和微电子的未来,至关重要。让我们共同前行,怀揣共同愿景,齐心协力,将芬兰打造为全球半导体行业的领导者。未来的征程充满挑战,但也充满机遇。我们可以共同创造一个不仅繁荣,而且可持续和包容的未来。
我们正站在技术进步和地缘政治转变的新时代的前沿,我很荣幸能介绍“来自北方的芯片——芬兰的半导体战略”。这份文件不仅是我们未来努力的蓝图,也是众多个人和组织集体思想和远见的证明。首先,我要衷心感谢芬兰技术工业半导体分会的每一位成员。你们的奉献和专业见解是这一战略的基石。对于众多公司和机构,无论是老牌公司还是新兴公司,你们的实践经验对于形成现实和前瞻性的方法都是无价的。特别感谢来自芬兰一流大学和 VTT 的学术合作伙伴。你们的研究和创新精神不仅指导了我们的战略,还将确保我们继续培养一种不断学习和适应不断变化的世界的文化。如果我不承认芬兰政府的关键支持,那将是我的失职。你们为营造有利于技术发展的环境而采取的政策和举措,帮助我们敢于梦想、志存高远。我们要特别感谢 TT-säätiö,他们的慷慨资助,促使我们将愿景转化为切实可行的计划。你们对芬兰半导体产业潜力的信心,一直是我们的鼓励和灵感源泉。同样,我要向 BCG 表示诚挚的谢意,感谢他们在本报告制定过程中提供的战略指导、见解和协助。你们的专业知识,对于确保我们的战略符合全球标准和实现半导体行业增长的雄心至关重要。这份战略报告只是一个开始。我邀请所有利益相关者,从行业资深人士到有抱负的创新者,加入我们实施这一战略的征程。你们的参与和合作,对于将这些计划转化为行动,塑造芬兰乃至其他地区半导体和微电子的未来,至关重要。让我们共同前行,怀揣共同愿景,齐心协力,将芬兰打造为全球半导体行业的领导者。未来的征程充满挑战,但也充满机遇。我们可以共同创造一个不仅繁荣,而且可持续和包容的未来。