Ting-Ting Wang 1,2 , Sining Dong 1,2,* , Chong Li 1,2 , Wen-Cheng Yue 1,2 , Yang-Yang Lyu 1,2 , Chen-Guang Wang 1,2 , Chang-Kun Zeng 1 , Zixiong Yuan 1,2 , Wei Zhu 3 , Zhi-Li Xiao 4, 5 , Xiaoli Lu 6 , Bin Liu 1 , Hai Lu 1 , Hua-Bing Wang 1,2,7 , Peiheng Wu 1,2,7 , Wai-Kwong Kwok 4 and Yong-Lei Wang 1,2,7,*
Qidong Hu 1 *, Ying Zhao 1 *, Namir Shaabani 1 *, Xiaoxuan Lyu 1 *, Haotian Sun 1 , Vincent Cruz 1 , Yi Kao 1 , Jia Xu 1 , Amber Fossier 1 , Karen Stegman 1 , Zhihao Wang 1 , Zhenping Wang 1 , Yue Hu 1 , Yi Zheng 1 , Lilian Kyaw 1 , Cipriano Zuluaga 1 , Hua Wang 1 , Hong Pei 1 , Colin Powers 1 , Robert Allen 1 , Hui Xie 1 , Henry Ji 1 , Runqiang Chen 1#
Victoza in the treatment of type 2 diabetes mellitus: a multicenter, randomized, open, parallel controlled, phase Ⅲ clinical study ………………………………………………… 840 Gu Nan, Guo Xiaohui, Pang Shuguang, Cheng Zhifeng, Wang Haifang, Geng Jianlin, Sun Jiao, Lyu Shujun, Fu Wenyan, Peng Hui, Li Shunbin, Ma Yujin, Zhou Dongmei, Tu Ping, Shi Xiaoyan, Lu Yibing, Yang Jing, Zhang Qiu, Ye Shandong, Liu Jingdong, Sun Chunmei Development and validation of a predictive model for the risk of QTc
z , Jinbao Lyu is , Jong-Lyel Roh bb , Enyong Dai cc , Gabbor Juhasz dd,ee , Wei Leu's , Jai' Piacentini mm,n , Wen-Xing Ding' Zhivotovsky xx,yy,ys , Sébastein Besteiro horror , Dmitry I. Gabrilovich bbb , Do-Hyung Kim CCC,Valerian E. Kagan DDD,HülyaBayiree,Guang-Cho Chen FF,Skot Ayton Ggg',Masaki Comatsu,Stefan Krautwadd JJJ Michael Thumm,Martin Campmann vv,Martin Campmann VV, BBBB,Helbert J. Zeccc Guido Croemer’
共价有机框架(COF)和金属有机框架(MOFS)是两种新兴的延长多孔结构,试图开发分子以外的网状化学,并为组成,结构,结构,性能和应用开放新的视野(Yaghi,2019; Yaghi,2019; Lyu et et lyu等。像将无机金属复合物扩展到2D和3D框架的MOF一样,COF将有机化学从分子和聚合物扩展到2D和3D有机结构(Diercks和Yaghi,2017)。MOF/COF的建造旨在通过拓扑指南(基于含金属的单位有机连接器/有机有机有机单体)之间通过牢固的键(坐标/共价相互作用)扩展多孔框架(坐标/共价相互作用)。这些方法的优点包括可控的合成,可设计的结构和可管理的功能(Geng等,2020)。除了具有高表面积和可调孔外,MOF和COF还显示出许多有趣的特性,包括通过π -π堆积和高稳定性的分层晶体结构和高稳定性,这仅在Graphene(Fritz and Coskun,2020年)中显示出由于存在强大的共振键。然而,无金属的COF远非满足众多领域的不断增长的需求,在这种情况下,金属在框架结构中的作用被强调。这包括诸如气体吸附和分离,异质催化,电子,电催化和电化学能量存储等应用。应对这些挑战的有效方法是将靶向金属离子引入COFS框架中以形成金属共价有机框架(MCOFS)(Dong等,2020)。与无金属COF相比,MCOF不仅具有上电催化活性,而且由于金属成分的参与而显示出更高的内在传导。开发独特的综合方法/策略来实现新颖的MOF,而COFS在促进其应用方面具有很大的希望。例如,通过液体液体界面聚合在室温和大气压下通过液体界面聚合制备灵活和独立的纯COF膜,这解决了一个主要问题,因为COF通常是无法解决的且无法实现的粉末(Liu等,2020)。已经有大量有机单体在其产生的结构中有效的功能化可能性。这导致基于实验室机器人和人工智能(AI)(AI)的“数字网状化学”,可以实现涉及合成和表征的高吞吐量实验。这种方法有望使MOF和COF中的发现更加重要,更容易实现(Lyu等,2020)。自1962年第一份报告使用葡萄糖氧化酶检测葡萄糖以来,电化学传感已被很好地接受为一种强大的工具,在各种领域中,需要高灵敏度,简单的操作,快速反应和低成本。电化学传感特别适合小型化,因此为制造灵活,一次性和廉价设备提供了多种施工优点(Amiri等,2018)。将新型元素引入MOF和COF为电化学传感带来了增强的范围,这有望促进其合成。
在众多使 lncRNA 功能失活的技术中,基于 CRISPR 的基因组编辑脱颖而出,成为应用最为广泛的技术。这种强大的工具使研究人员能够进行精确的基因修饰,为 lncRNA 功能敲除提供了两种主要策略:去除启动子和第一个外显子以及插入终止前 poly(A) 信号。每种方法都有各自的优点和挑战。例如,虽然启动子和外显子的去除可以有效地消除 lncRNA 表达,但它可能会无意中影响邻近基因。相反,插入 poly(A) 信号可以有效地停止转录,但如果使用替代的转录起始位点,则可能无法完全消除 lncRNA 功能。了解这些细微差别对于设计可靠的实验和准确解释结果至关重要(Lyu 等人)。
黄油含量(又称矩形)是一个循环图案1,在图形分析中至关重要。尤其是,在两部分图上[41,61,3,97]上,But-Ter-ter-ter-ter-ter-ter-ter-ter-ter-ter-ter-ter-ter-ter-ter-ter-ter-ter-ter-ter-ter-ter-ter-ter-ter-ter-ter-ter-ter-ter-ter-ter-terlif y [78,80,77,76],可以将顶点分为两个不相交组,并且仅在两组Vertices之间进行边缘。考虑图G =(v,e),其中v和e分别是ver和边缘的集合。黄油粉计数的问题是计算G中的黄油含量总数。黄油流数在许多应用中起着重要的作用,例如垃圾邮件检测[19,81,82],推荐系统[70],单词文献集群[16],研究小组识别[15],并根据传输理论[11]链接前词典。最近,Lyu等。[46]在电子商务的欺诈检测场景中,将黄油计算到修剪的顶点。
致谢 我要感谢我的导师沃尔沃汽车公司的 Pirooz Moradnia 博士,感谢他在这篇硕士论文的学习过程中给予我的持续指导、无尽支持和参与。此外,我还要感谢 KTH 机械系的 Stefan Wallin 博士在整个过程中提供的所有支持和建议。另外,我还要感谢沃尔沃的同事,他们愿意在整个过程中分享他们宝贵的时间。我还要感谢沃尔沃汽车公司提供的学习和实践机会。最后,我必须向我的父母表示最深切的谢意,他们在我学习期间以及在研究和撰写这篇论文的过程中给予我坚定不移的支持和持续的鼓励。没有他们,我不可能取得这一成就。 吕志鹏
BSN3703 ENTREPRENEURIAL STRATEGY AY2024/2025 Semester 1 Lecture Time: Friday 3pm to 6pm Venue: BIZ 1 03-07 Instructor: Adj Assoc Prof Julian Pan Department: Strategy & Policy Office: BIZ2 2-3 Contact: panjfj@nus.edu.sg TA: Arthur Hu Email: arthur.hu@u.nus.edu TA: Lyu Dongyue电子邮件:dongyue.lyu@u.nus.edu课程说明BSN3703洞悉了企业家精神,策略,筹款和管理的过程和品种。该课程从理论和研究中很大程度上汲取灵感,但其核心是实践的。大多数班级时间将专门讨论描述不同企业家的职业和工作的企业家情况的案例讨论。这有助于学生对任何内在的企业家野心的反思。这些案例说明了风险和不确定性以及驾驶启动格局所需的复杂决策背后的程序和思维过程。班级的其余部分涉及通过客人互动和演讲者与启动领域的互动。
磁性随机存取存储器 (MRAM) 作为一种新兴的非挥发性存储器,具有读写速度快、耐久性高、存储时间长、功耗低等特点,几年前就引起了台积电、三星、格罗方德等大型半导体代工厂的极大兴趣 [1−5]。一方面,MRAM 的高性能特性使其成为 28nm CMOS 技术节点以下嵌入式闪存 (e-flash) 的重要替代解决方案,而 e-flash 存在严重的经济障碍,阻碍了其进一步微缩 [6]。另一方面,MRAM 的目标是成为静态随机存取存储器 (SRAM) 等工作存储器的替代品,以解决先进 CMOS 节点中可能出现的严重漏电问题 [7,8]。然而,由于速度限制和耐久性问题,很难取代L1或L2缓存SRAM,尤其是对于两端自旋转移矩(STT)MRAM [ 9 − 11 ] 。因此,需要进一步探索下一代MRAM器件。