原理:间变性甲状腺癌 (ATC) 是一种极具侵袭性的甲状腺癌,在初次诊断时经常表现为局部晚期浸润或远处转移,因此错过了手术干预的最佳窗口。因此,全身化疗和靶向治疗对于改善 ATC 的预后至关重要。然而,ATC 对常规治疗表现出显著的耐药性,这凸显了阐明这种耐药性背后的生物学机制并确定新的治疗靶点以克服它的必要性。方法:我们对来自 ATC 样本的大量和单细胞 RNA 测序 (scRNA-seq) 数据进行了全面分析,以筛选与多药耐药 (MDR) 相关的 m 5 C 修饰相关基因。然后,我们进行了 IC 50 测定、流式细胞术,并使用了 Nsun2 敲除的自发致瘤 ATC 小鼠模型来证明 NSUN2 促进了 ATC 中的 MDR。为了研究 NSUN2 介导的耐药机制,我们生成了 NSUN2 敲除的 ATC 细胞系并进行了转录组学、蛋白质组学和 MeRIP-seq 分析。此外,还进行了 RNA 测序和可变剪接分析以确定 NSUN2 敲除后的整体变化。我们通过糖蛋白染色、变性 IP 泛素化、核质分馏和 PCR 进一步探索了 NSUN2/SRSF6/UAP1 轴的潜在机制。最后,我们在体外和体内评估了小分子 NSUN2 抑制剂与抗癌药物的协同作用。结果:我们的研究结果表明,NSUN2 表达与 ATC 中的 MDR 显着相关。 NSUN2 充当 SRSF6 mRNA 上的 m 5 C 的“写入器”,ALYREF 充当 m 5 C 的“读取器”,从而诱导选择性剪接重编程并将 UAP1 基因的剪接形式从 AGX1 重定向到 AGX2。因此,AGX2 增强了 ABC 转运蛋白的 N 连接糖基化,通过防止泛素化介导的降解来稳定它们。此外,NSUN2 抑制剂可降低 NSUN2 酶活性并减少下游靶标表达,从而为克服 ATC 中的 MDR 提供了一种新颖且有希望的治疗方法。结论:这些发现表明 NSUN2/SRSF6/UAP1 信号轴在 ATC 的 MDR 中起着至关重要的作用,并将 NSUN2 确定为 ATC 化疗和靶向治疗的协同靶点。
摘要 正常组织 DNA 的总体 5-甲基胞嘧啶 (m5C) 含量在组织特异性方面存在很大差异。通过高效液相色谱法,我们检查了 103 种人类肿瘤(包括良性、原发性恶性和继发性恶性肿瘤)的 DNA 酶消化物的 m5C 含量。这些肿瘤样本的多样性和数量使我们能够比较肿瘤组织和人类正常组织的 DNA 甲基化水平范围。大多数转移性肿瘤的基因组 m'C 含量明显低于大多数良性肿瘤或正常组织。具有高甲基化 DNA 的原发性恶性肿瘤的百分比介于转移性和良性肿瘤之间。这些发现可能反映了 DNA 的广泛去甲基化参与了肿瘤进展。这种去甲基化可能是与癌症相关的不断产生的细胞多样性的来源。
2013年,Selmi博士从Modena和Reggio Emilia大学获得了分子和再生医学博士学位,重点是表征癌细胞系中TIS11蛋白家族在转录后调控的致癌mRNA。 2014年,Selmi博士移居英国剑桥大学,加入Michaela Frye的实验室,并在RNA修改的(重新)新兴领域工作。 在那里,Selmi博士的团队制作了全转录组的单核苷酸分辨率,依赖NSUN6依赖性5-甲基环肽(M5C),并研究了M5C和腺苷脱氨酸对转录倍率失误和密码元对人胚胎干细胞中人类胚胎干细胞中的影响(Selmi,Hussain Nar Nar 202222222222222222222222222222222222222222222222222122221222222222222EMTRICT和CODON deamination; 2019年,Selmi博士加入了Horizon Discovery在英国剑桥的创新团队,参与开发模块化CRISPR基础编辑器进行精确基因组编辑(Collantes JC,The CRISPR Journal 2021)。 2021年初,Selmi博士加入了Consiglio Nazionale Delle Ricerche(CNR)的生物医学技术研究所。 在Selmi实验室中,研究重点介绍了两个主要领域:RNA修饰的研究及其对mRNA翻译的影响以及CRISPR基础编辑者的技术发展。 实验室结合了先进的基因组编辑和测序技术,以探索癌症和干细胞细胞模型中的新调节机制。2013年,Selmi博士从Modena和Reggio Emilia大学获得了分子和再生医学博士学位,重点是表征癌细胞系中TIS11蛋白家族在转录后调控的致癌mRNA。2014年,Selmi博士移居英国剑桥大学,加入Michaela Frye的实验室,并在RNA修改的(重新)新兴领域工作。 在那里,Selmi博士的团队制作了全转录组的单核苷酸分辨率,依赖NSUN6依赖性5-甲基环肽(M5C),并研究了M5C和腺苷脱氨酸对转录倍率失误和密码元对人胚胎干细胞中人类胚胎干细胞中的影响(Selmi,Hussain Nar Nar 202222222222222222222222222222222222222222222222222122221222222222222EMTRICT和CODON deamination; 2019年,Selmi博士加入了Horizon Discovery在英国剑桥的创新团队,参与开发模块化CRISPR基础编辑器进行精确基因组编辑(Collantes JC,The CRISPR Journal 2021)。 2021年初,Selmi博士加入了Consiglio Nazionale Delle Ricerche(CNR)的生物医学技术研究所。 在Selmi实验室中,研究重点介绍了两个主要领域:RNA修饰的研究及其对mRNA翻译的影响以及CRISPR基础编辑者的技术发展。 实验室结合了先进的基因组编辑和测序技术,以探索癌症和干细胞细胞模型中的新调节机制。2014年,Selmi博士移居英国剑桥大学,加入Michaela Frye的实验室,并在RNA修改的(重新)新兴领域工作。在那里,Selmi博士的团队制作了全转录组的单核苷酸分辨率,依赖NSUN6依赖性5-甲基环肽(M5C),并研究了M5C和腺苷脱氨酸对转录倍率失误和密码元对人胚胎干细胞中人类胚胎干细胞中的影响(Selmi,Hussain Nar Nar 202222222222222222222222222222222222222222222222222122221222222222222EMTRICT和CODON deamination;2019年,Selmi博士加入了Horizon Discovery在英国剑桥的创新团队,参与开发模块化CRISPR基础编辑器进行精确基因组编辑(Collantes JC,The CRISPR Journal 2021)。2021年初,Selmi博士加入了Consiglio Nazionale Delle Ricerche(CNR)的生物医学技术研究所。在Selmi实验室中,研究重点介绍了两个主要领域:RNA修饰的研究及其对mRNA翻译的影响以及CRISPR基础编辑者的技术发展。实验室结合了先进的基因组编辑和测序技术,以探索癌症和干细胞细胞模型中的新调节机制。
摘要:表观转录组学是指通过影响 RNA 功能的 RNA 修饰和编辑来对基因表达进行转录后调控。已描述了多种类型的 mRNA 修饰,其中包括 N6-甲基腺苷 (m6A)、N1-甲基腺苷 (m1A)、7-甲基鸟苷 (m7G)、假尿苷 (Ψ) 和 5-甲基胞苷 (m5C)。它们改变 mRNA 结构,从而改变稳定性、定位和翻译效率。表观转录组的扰动与人类疾病有关,因此为潜在的治疗方法提供了机会。在这篇综述中,我们旨在概述表观转录组标记在骨骼肌系统中的功能作用,特别是在胚胎肌生成、肌细胞分化和肌肉稳态过程中。此外,我们探索了高通量表观转录组测序数据来识别肌肉特异性基因中的 RNA 化学修饰,并讨论了可能的功能作用和潜在的治疗应用。
