抽象教育是改变知识的一种方式,以便人类能够发展潜力。教育鼓励每个人发展并适应不断变化的时代,例如技术领域的进步。学生的学习成绩是成功管理学习计划的关键指标。学术绩效检测可以帮助研究计划经理监视并对有可能遇到困难的学生采取积极行动。机器学习可以是通过帮助分类和检测学生学术能力来克服这一挑战的解决方案。机器学习技术已被证明非常有效地分析复杂的数据并揭示了人们难以检测的隐藏模式。本研究旨在探索在检测学生学业表现的机器学习算法的实施,尤其是在NIAS大学数学教育研究计划中。随着技术进步,机器学习已被证明在分类数据和检测传统方法无法识别的隐藏模式方面有效。本研究使用支持向量机(SVM)算法根据从学生主要数据中收集的数据集来预测学生的学习成绩。数据集包括各种因素,例如GPA值,出勤,参与和学习资源的使用。在要使用的方法中,将使用调查表收集数据,其中有许多受访者多达193人。已收集的数据将使用SVM处理,以在预测学生的学习成绩中获得结果。分析结果表明,使用的SVM模型的精度为77.59%,在学业表现良好的学生班级中的偏见更加倾向。这项研究的结果有望在开发更有效的学习方法和对三级机构的学术干预的个性化方面做出实际贡献。关键字:机器学习,学业表现和支持向量机
在生物科学中,机器学习(ML)已成为一项基本技术,它正在彻底改变研究方法并加快各种领域的发现。在本文中讨论了ML在生物科学中的各种用途的详细概述,包括药物开发,蛋白质科学,疫苗,生物系统和计算生物学。ML模型促进了副作用降低和疗效提高的创新药物候选物的快速发现,因此通过使用大规模的生物学数据来加快药物开发管道。mL技术正在改善蛋白质科学领域蛋白质相互作用,结构和功能的预测。ML技术极大地帮助了疫苗,表位预测和抗原选择的设计。ML模型基于个体免疫反应评估遗传和蛋白质组学数据,促进了对免疫原性和疫苗功效最佳的个性化免疫发电的产生。此外,通过复制细胞过程,建模复杂的生物网络和预测基因调节机制,ML技术正在彻底改变生物系统的研究。在计算生物学中,ML用于表型预测,基因表达分析和序列分析。ML模型促进了精确医学技术的发展,药物反应模式的表征以及通过组合多摩学数据来鉴定疾病生物标志物。充分探索ML在解决医疗保健,计算机科学家,生物学家和生物信息学家中的重大问题的潜力
amarin市场并以品牌名称VASCEPA®的品牌销售Icosapent Ethyl,这是鱼油中通常发现的omega-3脂肪酸的乙基乙基。2012年,美国食品药品监督管理局(“ FDA”)批准VASCEPA治疗严重的高甘油三酯血症(“ SH-INDICATION”),其中患者的血液触发液水平至少为500 mg/dl。作为其标签VASCEPA的一部分,Amarin包括明确的“使用限制”,并揭示了“ Vascepa对心血管死亡率和发病率对严重高糖尿病患者的影响尚未确定”。 J.A.650(“使用的简历限制”)。但观察到临床测试数据表明,Vascepa能够降低甘油三酸酯水平而不增加“不良”胆固醇(即,LDL-C),Amarin继续研究该药物的潜在 - 海三血管用途。
人们越来越多地与诸如可穿戴传感器,VR/AR耳机或其他数据收集系统等技术相互作用,并成功地模糊了物理和数字之间的界限;身体及其与环境的互动。同时,这些传感技术的非自愿数据收集和机器主导的决策加剧了历史上的不平等,尤其是影响边缘化群体。通过新技术解决人类运动,思想和经验是一项持续的挑战,需要新型的创造性和想象力的艺术实践。
地球科学中标记的培训数据的可用性反映在监督分析中使用的训练数据数量中。除了上述10年的分析外,我们还从2018 - 2019年的AGU论文中手动提取了其他相关信息,包括应用的ML算法,标记的培训数据的数量和数据类型(模型输出,卫星,原位,原位,重新分析等)。在我们调查的论文中,大多数ML算法是使用数百个标记样品培训的。但是,对于使用模型输出或大型,已建立的数据集的某些应用程序,培训数据的数量范围更大。缺乏训练数据在生物学科学和陆地水圈(水文)研究中尤其急切。
单元I(21小时)药物物质及其控制源和杂质类型的杂质,其极限,限制氯化物,硫酸盐,铁,铅,砷和重金属的测试。Pharmaceutical Aids & Necessities (Antioxidants: Theory, the selection of Antioxidants, Official antioxidants (Hypophosphorus Acid, Sodium bisulphite, Sodium thiosulphate, Sodium nitrite ) Major Intra & Extracellular Electrolytes: Major Physiological ions (Chloride, Phosphate, Bicarbonate, Sodium, Potassium, Calcium,镁);用于替代治疗(氯化钠),钾替代钾(氯化钾),钙替代(氯化钙,葡萄糖钙)肠肠镁镁的给药(硫酸镁)柠檬酸盐,柠檬酸钾,乳酸钠,氯化铵),电解质联合疗法};必不可少的和微量的元素:{铁,铜,锌,铬,锰,钼,硒,硫和碘。官方碘产品(碘,碘化钾,碘化钠。
机器学习的快速增长已大大改变了各种行业,包括健康,金融和自治系统。了解这个动态领域的趋势对于指导研究,分配资源和预期未来的发展至关重要。本研究通过研究科学文章的标题和摘要来解决2014年至2024年机器学习研究中进行全面趋势分析的必要性。通过提取描述性限定词,我们将文章分类为特定的主题,并随着时间的推移分析了它们的演变。我们的方法包括对预选赛的详细研究,对这些资格符与关联规则的共同存在的研究,文章的主题分类以及每个主题的趋势预测。关键发现突出了“人工神经网络和深度学习”等主题的持续突出以及“生成模型”等新领域的出现。分析显示研究重点的重大转变,并确定了一致的趋势,为该领域的发展提供了宝贵的见解。这项研究证明了文本挖掘技术在跟踪和预测研究趋势中的有效性。
