作为一名讲师,尼古拉斯·阿格拉特(NicolásAgraït)教授了各种本科物理学课程,包括流体物理学,计算机科学,实验技术,量子力学和固态物理学。他以清晰且易于访问的方式传达概念的能力给他的学生留下了持久的印象,其中许多人继续从事学术界和行业的成功职业。他还监督了许多单身汉和硕士学位,这使他的学生有机会开始进行科学职业。总体而言,尼古拉斯(Nicolás)监督了12个博士学位论文,以智慧和奉献精神指导他的学生,鼓舞人心的好奇心和科学严谨。尼古拉斯·阿格拉特(NicolásAgraït)教授自1989年加入UAM中的低温实验室以来一直在扫描探针显微镜领域工作。在那里,他在低温下建立了新的扫描隧道显微镜(STM),并研究了从隧道状态到接触式的过渡,以解释纳米尺寸金属中电导的量化。奇异力传感器的发展使他能够在纳米尺度上研究塑性变形过程,表明在此规模上,塑性变形过程是作为一系列弹性阶段进行的,并与原子重排交替进行。这些作品的影响很高。
由此最终的案件已经在我们面前三遍,此时,Mack的唯一幸存索赔是根据1993年的《宗教自由恢复法》(《 RFRA》)(美国法典42)。§§2000BBet seq。卫队寻求对该主张的简易判决,但地方法院最初否认该动议,裁定陪审团可以合理地发现卫队违反了RFRA,这实质上负担了Mack的行使宗教。后来,后来再次提出简易判决,这次是基于他们有权获得合格豁免权的理论。关于该论点,地方法院支持他们。认为,合格的免疫力是有必要的,因为没有明确建立的卡塞拉夫会让一个合理的人通知守卫行动的非法性。Mack再次提出上诉。
抽象教育是改变知识的一种方式,以便人类能够发展潜力。教育鼓励每个人发展并适应不断变化的时代,例如技术领域的进步。学生的学习成绩是成功管理学习计划的关键指标。学术绩效检测可以帮助研究计划经理监视并对有可能遇到困难的学生采取积极行动。机器学习可以是通过帮助分类和检测学生学术能力来克服这一挑战的解决方案。机器学习技术已被证明非常有效地分析复杂的数据并揭示了人们难以检测的隐藏模式。本研究旨在探索在检测学生学业表现的机器学习算法的实施,尤其是在NIAS大学数学教育研究计划中。随着技术进步,机器学习已被证明在分类数据和检测传统方法无法识别的隐藏模式方面有效。本研究使用支持向量机(SVM)算法根据从学生主要数据中收集的数据集来预测学生的学习成绩。数据集包括各种因素,例如GPA值,出勤,参与和学习资源的使用。在要使用的方法中,将使用调查表收集数据,其中有许多受访者多达193人。已收集的数据将使用SVM处理,以在预测学生的学习成绩中获得结果。分析结果表明,使用的SVM模型的精度为77.59%,在学业表现良好的学生班级中的偏见更加倾向。这项研究的结果有望在开发更有效的学习方法和对三级机构的学术干预的个性化方面做出实际贡献。关键字:机器学习,学业表现和支持向量机
课程目标: 1. 认识机器学习的基本术语和基本概念。 2. 理解监督学习模型的概念,重点关注最新进展。 3. 关联监督学习的神经网络模型概念 4. 发现机器学习的无监督学习范式 5. 理解强化学习和集成方法的概念。 UNIT-I 简介:机器学习、监督学习、无监督学习、强化学习简介。深度学习。 特征选择:过滤器、包装器、嵌入式方法。 特征规范化:最小-最大规范化、z 分数规范化和常数因子规范化 降维简介:主成分分析(PCA)、线性判别分析(LDA) UNIT-II 监督学习 - I(回归/分类) 回归模型:简单线性回归、多元线性回归。成本函数、梯度下降、性能指标:平均绝对误差(MAE)、均方误差(MSE)R 平方误差、调整 R 平方。分类模型:决策树 - ID3、CART、朴素贝叶斯、K 最近邻(KNN)、逻辑回归、多项逻辑回归支持向量机 (SVM) - 非线性和核方法 UNIT – III 监督学习 – II(神经网络)神经网络表示 – 问题 – 感知器、激活函数、人工神经网络 (ANN)、反向传播算法。分类指标:混淆矩阵、精度、召回率、准确度、F 分数、ROC 曲线。UNIT – IV 分类中的模型验证:交叉验证 - 保留方法、K 折、分层 K 折、留一交叉验证。偏差-方差权衡、正则化、过拟合、欠拟合。集成方法:Boosting、Bagging、随机森林。UNIT – V 无监督学习:聚类-K-均值、K-模式、K-原型、高斯混合模型、期望最大化。强化学习:探索和利用权衡、非关联学习、马尔可夫决策过程、Q 学习
(i)庇护所和紧急解决:这是灾难后立即出现的。药剂师的参与在管理战略国家库存(SNS)方面的紧急响应中有所增加,以应对自然灾害并努力重建医疗保健基础设施。(ii)供水和卫生:在药剂师的帮助下,公共卫生工程部和市政委员会都看这件事。(iii)媒介和害虫控制:在各自部门的帮助下,药剂师可以帮助防止媒介传播疾病。ex。节肢动物传播疾病。(iv)控制传染病及其预防:在流行病或大流行状况时,药剂师可以扩展其技术知识以防止爆发。ex。COVID-19。 (v)培训员工,志愿者和社区:他们在灾难管理中非常有用,并且由管理层的不同部门完成。 应该指出的是,对于每个部门的工作,药剂师都是重要的人。COVID-19。(v)培训员工,志愿者和社区:他们在灾难管理中非常有用,并且由管理层的不同部门完成。应该指出的是,对于每个部门的工作,药剂师都是重要的人。
为人工智能中学习的基本学习类型提供全面的理解,并在监督和无监督的学习之间划定。本章旨在向读者介绍这些学习范式的核心概念和方法,包括分类概述,并解释不同数据集的重要性,例如培训,测试和验证在AI模型的开发中。此外,本章将解决模型培训中的共同挑战,尤其是过度拟合和不足,并讨论减轻这些问题的策略。目标是为读者提供有效应用这些概念在AI的各种应用中的知识。
●计算机视觉和机器学习应用在Heliophysics中的应用,包括:太阳能磁性太阳能活动(耀斑,CMES,颗粒)太阳能风太空空间天气和空间气候气候地机无线电循环无线电射击