利用固态合成方法是回收花费锂离子蝙蝠的一种简单有效的方法。但是,验证其直接修复对完全耗尽的阴极材料的影响是必不可少的。在这项工作中,探索了通过固态合成直接修复完全失败的阴极材料的最佳条件。在850 C和N(li)/N(CO)比率为1:1的最佳再生条件下,支出的Licoo 2阴极材料的排放能力从21.7 mAh G 1到138.9 mAh G 1回收。再生材料表现出出色的电化学性能,甚至比商业Licoo 2大。此外,根据整个闭环回收过程,评估了电池生产过程中使用的各种回收技术和原材料的经济和环境影响,并确定了直接再生方法的优越的经济和环境可行性。2023作者。由Elsevier Inc.出版这是CC下的开放式访问文章(http://creativecommons.org/licenses/4.0/)。
在锂负极上形成疏锂无机固体电解质界面 (SEI) 并在正极上形成正极电解质界面 (CEI) 对高压锂金属电池是有益的。然而,在大多数液体电解质中,有机溶剂的分解不可避免地会在 SEI 和 CEI 中形成有机成分。此外,有机溶剂由于其高挥发性和易燃性,通常会带来很大的安全风险。本文报道了一种基于低熔点碱性全氟磺酰亚胺盐的无有机溶剂共晶电解质。锂负极表面的独特阴离子还原产生了一种无机的、富含 LiF 的 SEI 膜,该膜具有很强的抑制锂枝晶的能力,这一点可以从 0.5 mA cm −2 和 1.0 mAh cm −2 时 99.4% 的高锂电镀/剥离 CE 以及 80°C 下全 LiNi 0.8 Co 0.15 Al 0.05 O 2 (2.0 mAh cm −2 ) || Li (20 μ m) 电池的 200 次循环寿命看出。所提出的共晶电解质有望用于超安全和高能锂金属电池。
额定扭矩................................................................. 2 Nm 额定速度............................................................... 20 rpm 可调速度........................................ 10-28,增量为 2 rpm 噪音等级............................................................... <42 dB(A)* 无线电协议............................................................. Zigbee 无线电频率............................................................. 2,4 GHz 电池类型................................ 12V 2600 mAh(内置锂离子) 电池使用寿命.................................... 每年仅充电一次** 充电时间.................................................... <1,5 小时*** 低电量指示器............................................................. LED
françoisPaillard,OphélieFlageul,GuillaumeMahé,Bruno Laviolle,Caroline Dourmap和Al ..用于预防心血管的短频率调查表的有效和可重复性。心血管疾病的档案,2021,114(8-9),pp.570-576。10.1016/j.acvd.2020.12.008。hal-03222665
n,通过直接碳化制备具有介孔结构的杂种掺杂的活性污泥生物炭,然后通过腌制修改将其应用于非含锂氧气电池的正极电极。其在阴极中的应用可以以200 mA/g的电流密度提供7888 mAh/g的特定容量。锂氧电池的放电过程将产生
LiBC 是一种类石墨材料,可作为锂离子电池的负极材料提供高容量,而锂离子电池严重依赖于碳前体。开发一种提高容量的方法对于 LiBC 负极材料的研究和利用具有重要意义。在这里,我们用高温处理原始 LiBC 材料以获得四个改性 LiBC 样品。改性 LiBC 样品以粉末形式用铝箔包裹在 600 ◦ C 下处理 10 小时,其可逆容量为 353 mAh/g,而锂离子电池中原始 LiBC 的可逆容量仅为 218 mAh/g。根据 XRD 结果,高温处理后 LiBC 的层结构得以保持,而晶格参数略有变化,尤其是层间距离。改性 LiBC 样品的拉曼光谱与原始 LiBC 相似,只是峰强度不同,这表明高温处理过程中锂发生了蒸发。因此,高温处理可以通过降低锂含量、改变晶体结构来提高LiBC的容量,使得LiBC材料成为更有前景的锂离子电池负极材料。
人工智能(AI)的景观正在以前所未有的速度发展,新玩家逐渐挑战西方科技巨头的统治地位。这样的破坏者是DeepSeek,这是一家中国AI创业公司,其开创性的AI模型DeepSeek R1迅速引起了人们的关注。与需要大量计算资源的传统AI模型不同,DeepSeek R1是为了效率而设计的。它提供高级性能,同时使用较小的处理能力和更低的成本。这种进步具有深远的后果,特别是对于依赖AI基础设施(例如数据中心)的行业。DeepSeek的出现引发了一个连锁反应,该反应从美国股票市场中消除了近1万亿美元的市场价值。与此同时,马来西亚的布尔萨(Bursa Malaysia)并未从市场溃败中脱颖而出。截至2025年1月底,DeepSeek和更严格的美国芯片政策的出现在马来西亚Bursa Malaysia 1的15家AI代理公司中共同消除了2000亿令吉的市值。在马来西亚,YTL Power International Berhad(YTL Power)和Mah Sing Group Berhad(Mah Sing)等公司一直在扩大其在数据中心的投资,预计AI驱动的计算能力会持续增长。 但是,由于DeepSeek的模型证明了强大的AI可以在硬件要求较少的情况下运行,因此大规模数据中心的预期增加可能不会遵循先前预期的轨迹。 最大的问题是:这将如何影响马来西亚的数据中心公司,投资者对DeepSeek的AI技术应该了解什么?在马来西亚,YTL Power International Berhad(YTL Power)和Mah Sing Group Berhad(Mah Sing)等公司一直在扩大其在数据中心的投资,预计AI驱动的计算能力会持续增长。但是,由于DeepSeek的模型证明了强大的AI可以在硬件要求较少的情况下运行,因此大规模数据中心的预期增加可能不会遵循先前预期的轨迹。最大的问题是:这将如何影响马来西亚的数据中心公司,投资者对DeepSeek的AI技术应该了解什么?AI破坏者以这种破坏的核心重塑游戏是DeepSeek R1,这是一种AI模型,它通过更少的少量实现而挑战常规AI基础架构需求。传统上,AI模型需要大量的计算能力和能量才能有效运行。这些要求推动了高性能服务器,云计算和大规模数据中心的增长。
(EDLC),其中流行的机制需要在高表面积材料和液体电解质之间的界面处进行非法拉第电荷存储。这些储能装置由于其高功率密度(10 kW kg −1 )、快速响应时间(1 s)、循环寿命(10 5 次循环)和安全性而引人注目。[1] 纳米多孔碳材料通常用于 EDLC。它们的多孔结构充当任何介质的批量缓冲库,从而减少离子对孔内表面的传输阻力。[2] 增加的孔隙可及性可容纳更多阳离子来填充电极的双层,从而产生 200 F g −1 数量级的比电容,就像活性炭的情况一样。 [3] 后者在这些储能装置中被广泛使用,因为它价格低廉,即碳化过程源自木材、煤和坚果壳,与其他多孔材料(如模板碳和碳化物衍生碳)相比,更容易制备。 它的比表面积约为 2000 m 2 g − 1 ,可为标准电池电极提供 ≈ 30 mAh g − 1 V − 1,而标准电池电极为 150 mAh g − 1 V − 1。[4,5]
由于高能量密度设备的优势,高能密度的高能密度需求迅速生长。除了锂离子电池,Lith-ium金属电池(LMB)之外,由于理论特异性极高(3860 mAh g –1,2062 mAh cm –3),因此被认为是下一代可充电电池,并且是最低的Redox电势(–3.04 V vs.标准氢电极)[1-3]。However, LMBs has severe problems due to (1) uncontrollable lithium dendrite formation, result in penetration of the separator, causing short circuit, (2) large volumetric and morphological changes during charging process, (3) continuous reactions between lithium metal and electrolyte resulting from the crack of solid electrolyte interphase (SEI) layers on the lith- ium metal surface [4,5].这些问题导致循环寿命和安全风险恶化。已经探索了几种策略,例如改变电解质(锂盐,溶剂(碳酸盐,乙醚)和功能添加剂)以形成稳定的SEI
图 2-3 显示了棕地/改造项目的 HSE 案例决策树。如果项目确定的重大事故隐患 (MAH) 不是新的,也不是设施或集群运营 HSE 案例中记录的现有 MAH 的附加内容,并且拟议的改造项目不会给现有设施风险状况带来重大变化(有关“重大变化”的更多信息,请参阅表 2-4),则项目需要准备项目 ALARP 演示报告。此类项目不需要补充/更新运营 HSE 案例,项目 ALARP 演示报告就足够了。所有地块外交付合同项目和大多数组合 FEED/DD 项目都属于此类别。改造项目对现有设施或集群运营 HSE 案例的任何影响(例如:对 SCE、HSE 关键活动/任务的影响)都应记录在项目 ALARP 演示报告中。在相关设施或集群运营 HSE 案例的 5 年更新期间,应注意纳入此类项目范围。