1.0 Introduction ........................................................................................................................... 7
长的非编码RNA(LNCRNA)在生物学的许多方面都具有新兴的作用。据报道,lncRNA可以充当癌基因,并且在各种癌症类型中都改变了。其中,与转移相关的肺腺癌转录本1(Malat1)是一种高度表达的lncRNA,在多种癌症类型中,与患者的疾病进展有关。在乳腺癌患者的转移性病变中,Malat1高度上调。在临床前乳腺癌模型中,遗传学和药理抑制MALAT1导致肿瘤结构的变化以及涉及上皮 - 间质转变(EMT)的基因改变引起的转移的变化。
长的非编码RNA(LNCRNA)是一类NCRNA,大小超过200个核苷酸,在不同的细胞过程中起多种作用,包括调节许多生物学过程,例如通过抑制蛋白质编码靶基因来调节增殖,侵袭和凋亡(26)。因此,LNCRNA被认为是包括癌症在内的各种疾病中的新型生物标志物和治疗靶标(26)。lncRNA转移相关的肺腺癌转录本(MALAT1)已被证明可以调节IGF-1/ PI3K/ AKT信号传导(28),并与各种癌症类型的恶性转化有关(3)。以前,我们表明了Malat1表达升高是IDH1/2野生型原代GBS总体生存的不利预后因素的重要性(3)。此外,在DM中观察到Malat1的高表达并导致胰岛素抵抗(7)。但是,MALAT1在GB发育中的潜在作用仍需要充分说明。因此,在这项研究中,我们旨在描述GB中MALAT1与DM共存的MALAT1及其对疾病进展的潜在影响。
介绍在生命的第一周,小鼠能够再生受伤的心肌(1,2)。与具有再生能力的其他物种类似,鼠后心脏的再生是通过现有心肌细胞的扩散来实现的(1,3,4)。促脂性免疫细胞的浸润(5),血管生成和动脉生成(6)和心脏组织的神经(7)神经(7)有助于这种短暂的再生能力。在此期间,即使心肌细胞中存在DNA合成,它也主要与核核酸化有关(8)。,已经提出了多倍体或双核心肌细胞的出现,是斑马鱼和鼠后再生后再生能力丧失的原因(9,10)。此外,在较大的哺乳动物和人类中,心肌细胞正在从单核和增殖状态过渡到一生多核的态度(11-13)。几项研究已经解决了再生下降的基础机制,并报告了涉及心肌细胞增殖丧失的转录和代谢机制(14)。ERBB2对心肌细胞的代谢重编程对于再生心脏中心肌细胞的增殖至关重要(15,16)。此外,河马途径效应子YAP的一种活跃形式通过激活胚胎和增殖基因表达程序的表达来促进心脏再生(17)。此外,小型非编码microRNA,例如miR-15(2),mir-199(18)和miR-34a(19)调节心肌细胞增殖。人类基因组含有16,000至100,000长的非编码RNA(LNCRNA)(20,21)。lncRNA被定义为未转化为蛋白质的200个核苷酸的转录本(22)。他们可以调节其他基因的表达(23),并以细胞类型特异性方式表达(22)。
摘要。- 目的:糖尿病(DM)介导的葡萄糖代谢受损,通过诱导高血糖和高胰岛素血症,胶质母细胞瘤(GB)风险。葡萄糖转移3(GLUT3)的整体膜转运蛋白促进葡萄糖转运至GB肿瘤细胞。我们旨在探索同时被诊断为DM的患者的GB肿瘤中GLUT3的调节。患者和方法:从93名GB患者中收集了福尔马林固定石蜡包裹(FFPE)肿瘤样品,并进行了回顾性分析。目前总共有15例患者被诊断为DM(GB-DM)。 通过分析其与Ki67,p53表达,MALAT1表达和周围血液血红蛋白A1C(HBA1C)水平的相关性,可以评估GLUT3在肿瘤攻击性中的作用。 T98G细胞用雌激素和Met- formin处理以调节GLUT3。 通过实时qPCR分析了GLUT3,SOX2和MALAT1的RNA升级。 通过Cobas C502分析仪测量T98G细胞的乳酸水平。 进行了刮擦伤口测定,以投资T98G细胞的迁移速率。 结果:GB-DM肿瘤中GLUT3的表达低于仅GB肿瘤。 在GB-dM中,肿瘤glut3和pe糖糖糖糖糖胶质蛋白(HBA1C)的表达与p53和ki67负相关。 降低的GLUT3缩短了GB-DM患者的无病生存期限。 empagli- flozin降低了glut3,而二甲双胍诱导的glut3在T98G细胞中。目前总共有15例患者被诊断为DM(GB-DM)。通过分析其与Ki67,p53表达,MALAT1表达和周围血液血红蛋白A1C(HBA1C)水平的相关性,可以评估GLUT3在肿瘤攻击性中的作用。T98G细胞用雌激素和Met- formin处理以调节GLUT3。 通过实时qPCR分析了GLUT3,SOX2和MALAT1的RNA升级。 通过Cobas C502分析仪测量T98G细胞的乳酸水平。 进行了刮擦伤口测定,以投资T98G细胞的迁移速率。 结果:GB-DM肿瘤中GLUT3的表达低于仅GB肿瘤。 在GB-dM中,肿瘤glut3和pe糖糖糖糖糖胶质蛋白(HBA1C)的表达与p53和ki67负相关。 降低的GLUT3缩短了GB-DM患者的无病生存期限。 empagli- flozin降低了glut3,而二甲双胍诱导的glut3在T98G细胞中。T98G细胞用雌激素和Met- formin处理以调节GLUT3。通过实时qPCR分析了GLUT3,SOX2和MALAT1的RNA升级。通过Cobas C502分析仪测量T98G细胞的乳酸水平。进行了刮擦伤口测定,以投资T98G细胞的迁移速率。结果:GB-DM肿瘤中GLUT3的表达低于仅GB肿瘤。在GB-dM中,肿瘤glut3和pe糖糖糖糖糖胶质蛋白(HBA1C)的表达与p53和ki67负相关。降低的GLUT3缩短了GB-DM患者的无病生存期限。empagli- flozin降低了glut3,而二甲双胍诱导的glut3在T98G细胞中。empagliflozin-Medi-抑制3抑制SOX2和MALAT1表达,并影响了T98G细胞的迁移能力。结论:我们的发现表明,GB-DM患者肿瘤的GLUT3表达低可能会诱导三磷酸腺苷(ATP)的产生。
crispr/cas9是一种最近发现的基因组编辑技术,它改变了科学家在研究基因功能方面的视力。cas9通过引导(g)RNA控制,该引导符合裂解以修饰相应基因的DNA。前列腺癌(PC)建模的发展不仅是针对识别前列腺细胞癌的信号传导途径的新型资源的,而且还为检查治疗的治疗剂来抵消这种类型的癌症的治疗方法创造了广泛的储藏。已经开发了几乎模仿人类前列腺癌的各种培养的针对前列腺癌的体细胞大鼠模型。纳米药物可以通过特定的传说增加生物利用度和结合来被动地靶向癌细胞,从而有助于系统性降低和提高疗效。本文重点介绍了脂质体负载的纳米米医学作为前列腺罐的潜在治疗方法,并阐明了伴有前列腺癌的CRISPR/CAS9变异。PC是通过乙基雌二醇在西大鼠模型中实验诱导的4周和SC。剂量为3,2'-二甲基-4-氨基苯基雌二醇(DAE)(50mg/kg),然后通过靶向脂质体涂层化合物进行处理,然后通过脂质体涂层化合物(例如脂质体去氨甲米松(DXM)),脂质体doxoru- doxoru- bicIn(dox)和四周(dox)(dox)(dox)(dox)turmical iperic(turmic of turmical(turmic of turmeric of)对其非靶向类似物地塞米松,阿霉素和姜黄的比较研究。3,2'-二甲基-4-氨基苯基雌二醇在5个月内引起西部大鼠的前列腺癌。 据报道,包括Malat1在内的前列腺细胞癌中对几个长的非编码RNA进行了管制。3,2'-二甲基-4-氨基苯基雌二醇在5个月内引起西部大鼠的前列腺癌。据报道,包括Malat1在内的前列腺细胞癌中对几个长的非编码RNA进行了管制。与这些脂质体化合物同时补充对前列腺癌的影响;通过前列腺特异性抗原(PSA),一氧化氮(NOX)和CRISPR/CAS9基因编辑研究了肿瘤标记。 另一方面,还研究了apoptotic生物标志物局灶性激酶(AKT-1),磷脂酰氨基烷醇激酶(PI3K)和糖原合酶激酶3(GSK-3)的基因表达,并还研究了这些结果,并通过HIS-HIS-拓扑核对学检查了这些结果。 脂质体负载的地塞米松;阿霉素和姜黄可以通过调节CRISPR/CAS9基因编辑和长期非编码基因MALAT1来视为前列腺癌的有希望的治疗剂。与这些脂质体化合物同时补充对前列腺癌的影响;通过前列腺特异性抗原(PSA),一氧化氮(NOX)和CRISPR/CAS9基因编辑研究了肿瘤标记。另一方面,还研究了apoptotic生物标志物局灶性激酶(AKT-1),磷脂酰氨基烷醇激酶(PI3K)和糖原合酶激酶3(GSK-3)的基因表达,并还研究了这些结果,并通过HIS-HIS-拓扑核对学检查了这些结果。脂质体负载的地塞米松;阿霉素和姜黄可以通过调节CRISPR/CAS9基因编辑和长期非编码基因MALAT1来视为前列腺癌的有希望的治疗剂。
Holly Kordasiewicz,Ionis Pharmaceuticals,美国,向中枢神经系统提供反义寡核苷酸治疗疗法,以治疗神经退行性疾病米歇尔·MICHELLE M.Boyd,美国脑疗法,美国简短介绍:MALAT1 ASO的生物分配j.美国药品,美国简短谈话:鞘内缀合物到中枢神经系统:ADME特征和PKPD关系Krzysztof bankiewicz,俄亥俄州俄亥俄州立大学,美国CNS药物的神经学方法:佛罗里达州的内部和室内路线延伸佛罗里达大学,佛罗里达州弗洛里达大学,弗洛克斯·弗洛斯·弗洛斯·弗洛克外围神经Matthew D. Cain,华盛顿大学医学院,美国简短讲座:IFNα的鼻内给药抑制委内瑞拉赤道的致命模型的早期复制和神经侵袭,病毒感染
摘要:结直肠癌是常见的消化道恶性肿瘤之一,发病率和死亡率较高。越来越多的证据表明,长链非编码RNA(lncRNA)和蛋白编码RNA通过竞争相同的微小RNA反应元件(MRE)相互作用,在多种肿瘤类型的基因表达调控中发挥重要作用。但lncRNA介导的竞争性内源性RNA网络在结肠癌中的调控机制和预后作用尚不清楚。从The Cancer Genome Atlas数据库下载了471例结肠癌和41例癌旁组织样本的mRNA、lncRNA和miRNA的表达谱,构建了结肠癌的lncRNA‑miRNA‑mRNA ceRNA网络,由17个枢纽lncRNA、87个枢纽miRNA和144个枢纽mRNA组成。分析了网络的拓扑特性,并使用随机游走算法识别与结肠癌显着相关的节点。使用 UALCAN 数据库进行的生存分析表明,17 个 lncRNA 中有 2 个被识别为[转移相关肺腺癌转录本 (MALAT1) 和母体表达基因 3 (MEG3)] 和
对治疗的抵抗力。例如,LNCRNA和miRNA与LNCRNA相互作用,LNCRNA充当竞争性内膜RNA(CERNAS),以改变miRNA活性并改变癌细胞中的mRNA表达。[5] lncrNA在肿瘤发生,预后结局,口腔癌的前体和相关信号通路中的作用,特别是引起了很多关注。这些分子在一系列生理和病理过程中具有重要功能,包括癌症和基因调节网络的复杂性。与口腔癌相关的识别和特征 - izing lncRNA为他们作为早期检测的生物标志物的潜力和开发成功疗法的靶标提供了重要的见解,同时还解决了使用NCRNA来改善患者结局的挑战。[6,7]三个肿瘤抑制lncRNA(MEG3,POU3F3和PANDAR),两个转移性的LNCRNA(Linc00312和Malat1)和六个LNCRNA(CD-KN2B-AS1,H19,H19,Hotair,Hotair,hotair,ap5m1,linc-linc-rinc-rer and cinterfif)[8] microRNA(miRNA)已成为口腔癌发病机理的关键参与者。microRNA是微小的非编码RNA分子,在转录后控制基因表达,影响各种生物学和病理过程,包括癌症形成和进展。他们参与口腔癌强调了它们作为早期检测生物标志物和新技术的靶标的潜力。研究
简介:他汀类药物是诊所中使用的批准药物之一,该药物是为了减少患者血液中胆固醇量的规定。然而,该药物在减少脂肪量和副作用的发生中的影响在患者中并不相同。由于LNCRNA在调节基因表达中的关键作用,Hotair LncRNA和Atorvastatin处理在调节HMGCR基因表达作为胆固醇合成中的主要调节剂中的可能作用。方法:通过文献综述,确定了几种在细胞维持和稳态中发挥作用的LNCRNA。生物信息学分析用于在HMGCR基因和候选LNCRNA之间找到常见的调节因素。MTT分析用于确定HEPG2细胞系中阿托伐他汀治疗的最佳剂量。RNA提取,cDNA合成和基因表达的定量分析通过qPCR进行。最后,通过蛋白质印迹技术评估了HMGCR蛋白表达。结果:生物信息学分析表明,HMGCR表达与某些LNCRNA之间存在关系(Hotair,Tug1,Malat1,Gas5,JPX,DLX6AS)。在细胞培养物中,阿托伐他汀治疗增加了HMGCR在mRNA和HEPG2细胞系中蛋白水平的表达。在候选LNCRNA中,在Atorvastatin治疗下,Hotair LncRNA表达降低了80%。下调热水基因导致在RNA和蛋白质水平下的HMGCR表达增加。关键字:胆固醇,阿托伐他汀,HMGCR,lncrna Hotair,基因表达结论:这项研究的结果表明,除了阻止HMGCR酶结合位点外,Atorvastatin还可以通过更改HOTAIR表达来调节HMGCR mRNA和蛋白质的表达。
