Stuart J. Mumford ∗ 1,2,3,Nabil Freij 4,Steven Christe 5,Jack Ireland 5,Florian Mayer 6,V。KeithHughitt 7,Albert Y. Shih 5,Daniel F. Ryan 8,5,Simon Liedtke 6,Simon Liedtke 6,Simon Liedtke 6,Simon Liedtke 6,daviderez-suárez9 IK 12,BrigittaSipőcz13,Rishabh Sharma 6,Andrew Leonard 3,David Stansby 14,Russell Hewett 15,Alex Hamilton 6,Laura Hayes 5,Asish Panda 6,Matt Earnshaw 6,Matt Earnshaw 6,Nitin Choudhary Choudhary 16,Ankit Kumar 6,Ankit Kumar 6,Ankit Kumar 6,Prateek Chanda Chanda 17 17,M.Chanda 17,M.Chanda 17,M.Md,M.D. Akramul Haque 18 , Michael S Kirk 11 , Michael Mueller 6 , Sudarshan Konge 6 , Rajul Srivastava 6 , Yash Jain 19 , Samuel Bennett 6 , Ankit Baruah 6 , Will Barnes 20 , Michael Charlton 6 , Shane Maloney 21 , Nicky Chorley 22 , Himanshu 6 , Sanskar Modi 6 , James Paul Mason 6 , Naman9639 6 , Jose Ivan Campos Rozo 23 , Larry Manley 6 , Agneet Chatterjee 24 , John Evans 6 , Michael Malocha 6 , Monica G. Bobra 25 , Sourav Ghosh 24 , Airmansmith97 6 , Dominik Stańczak 26 , Ruben De Visscher 6 , Shresth Verma 27 , Ankit Agrawal 6 , Dumindu Buddhika 6 , Swapnil Sharma 6 , Jongyeob Park 28 , Matt Bates 6 , Dhruv Goel 6 , Garrison Taylor 29 , Goran Cetusic 6 , Jacob 6 , Mateo Inchaurrandieta 6 , Sally Dacie 30 , Sanjeev Dubey 6 , Deepankar Sharma 6 , Erik M. Bray 6 , Jai Ram Rideout 31 , Serge Zahniy 5 , Tomas Meszaros 6 , Abhigyan Bose 6 , André Chicrala 32 , Ankit 6 , Chloé Guennou 6 , Daniel D'Avella 6 , Daniel Williams 33 , Jordan Ballew 6 , Nick Murphy 34 , Priyank Lodha 6 , Thomas Robitaille 6 , Yash Krishan 6 , Andrew Hill 6 , Arthur , 阿比盖尔·L·史蒂文斯 39, 40, 阿德里安·普莱斯-惠兰 41, 安巴尔·梅赫罗特拉 6, 阿尔谢尼·库斯托夫 6, 布兰登·斯通 6, 特朗·基恩·当 42, 伊曼纽尔·阿里亚斯 6, 菲昂拉格·麦肯齐·多佛 1, 弗里克·维斯特林格 36, 古尔山·库马尔 43, 哈什·马图尔 44, 伊戈尔·巴布施金 6, 杰伦·温比什 6, 胡安Camilo Buitrago-Casas 6 , Kalpesh Krishna 45 , Kaustubh Hiware 46 , Manas Mangaonkar 6 , Matthew Mendero 6 , Mickaël Schoentgen 6 , Norbert G Gyenge 47 , Ole Streicher 48 , Rajasekhar Reddy Mekala 6 , Rishabh Mishra 6 , Shashank Srikanth 43 , Sarthak Jain 6 , Tannmay Yadav 49 , Tessa D. Wilkinson 6 , Tiago MD Pereira 50, 51 , Yudhik Agrawal 12 , jamescalixto 6 , yasintoda 6 , 和 Sophie A. Murray 52
I. 序言 新的太空技术和轨道商业机会催生了全球航天产业的指数级增长和快速变化。火箭发射、卫星再入和上级火箭将气体和气溶胶排放到从地球表面到低地球轨道的每一层大气层中。这些排放可能会影响气候、臭氧水平、中层云量、地面天文学以及热层/电离层成分。航天产业的增长速度令人印象深刻:发射和再入质量通量最近每三年翻一番(Lawrence 等人,2022 年)。根据行业预测,到 2040 年,太空活动将继续增加至少一个数量级(Ambrosio 和 Linares,2024 年)。大型低地球轨道 (LEO) 卫星星座正在改变航天产业,因此到 2040 年,计划中的系统每年将需要发射和处置超过 10,000 颗卫星到大气层中。到 2040 年,以液化天然气 (LNG) 燃料发动机为动力的重型运载火箭预计将成为发射活动的主导 (Dominguez 等人,2024)。航天工业向大气排放的范围和性质正在急剧增长和变化 (Shutler 等人,2022)。发射和再入气溶胶排放量估计表明,到 2040 年,许多计划中的大型低地球轨道星座将需要将发射吨位从目前的 3,500 tyr -1 增加到 30,000 tyr -1 以上 (Shutler 等人,2022)。火箭燃烧排放量将与有效载荷同步增加。蒸发空间碎片和废火箭级的再入排放量将从目前的每年 1,000 吨增加到每年 30,000 吨以上 (Shulz 和 Glassmeier 2021)。到 2040 年,全球发射和再入大气层颗粒物(黑碳和金属氧化物)排放到平流层的总通量将与自然陨石背景通量相当。这些估计不包括不确定但可能很重要的发射要求,例如 MEO(中地球轨道)和 GEO(地球静止赤道轨道)等轨道上的新太空系统或积极的月球或火星探索计划。发射和再入大气层排放量的上升是在人们对航天排放的成分和化学成分存在广泛知识缺口的情况下发生的。人们对大型液化天然气火箭的排放和影响知之甚少。最近发现,重返大气层的太空碎片中的金属已经存在于构成天然平流层硫酸盐层的 10% 颗粒中,这强调了迫切需要了解未来重返大气层数量级的增加将如何影响大气(Murphy 等人,2023 年)。显然,总体上缺乏评估未来航天排放影响所需的科学和工程模型、工具和数据。知识差距:为了应对这些日益增长的担忧,2021 年,Surendra P. 博士美国宇航局艾姆斯研究中心的 Sharma 组织并领导了一个多机构工作组(航空航天公司的 Martin Ross 博士、NOAA/CSL(美国国家海洋和大气管理局/化学科学实验室)的 Karen Rosenlof 博士、科罗拉多大学 NOAA CSL 化学与气候过程组的 Chris Maloney 教授、哥伦比亚大学的 Kostas Tsigaridis 以及 GISS/NASA(戈达德空间研究中心/美国国家航空航天局)的 Gavin Schmidt 博士),在美国宇航局内部资金(地球科学部)的支持下,分析了预测发射和再入排放全球影响的模型的有效性和可信度,以及可用于验证这些模型的数据。该小组确定了对该现象的基本科学理解方面的关键差距,包括建模技术和
1. Johnson DB、Nebhan CA、Moslehi JJ、Balko JM。免疫检查点抑制剂:毒性的长期影响。Nat Rev Clin Oncol。2022;19:254-67。2. Sullivan RJ、Weber JS。检查点抑制剂的免疫相关毒性:机制和缓解策略。Nat Rev Drug Discov。2022;21:495-508。3. Quach HT、Johnson DB、LeBoeuf NR、Zwerner JP、Dewan AK。免疫检查点抑制剂引起的皮肤不良事件。J Am Acad Dermatol。2021;85:956-66。 4. Maloney NJ、Ravi V、Cheng K、Bach DQ、Worswick S。Stevens-Johnson 综合征和检查点抑制剂引起的毒性表皮坏死松解症样反应:系统评价。Int J Dermatol。2020;59:e183-8。5. Harr T、French LE。毒性表皮坏死松解症和 Stevens-Johnson 综合征。Orphanet J Rare Dis。2010;5:39。6. Frantz R、Huang S、Are A、Motaparthi K。Stevens-Johnson 综合征和毒性表皮坏死松解症:诊断和治疗综述。Medicina (Mex)。2021;57:895。7. Antonia SJ、Gettinger S、Goldman J、Chow LQ、Juergens R、Borghaei H 等人。一线 Nivolumab(抗 PD-1;BMS-936558,ONO-4538)和 Ipilimumab 在非小细胞肺癌 (NSCLC) 转移性非小细胞肺癌中的安全性和有效性。Int J Radiat Oncol。2014;90:S32-3。8. Goldinger SM、Stieger P、Meier B、Micaletto S、Contassot E、French LE 等。抗 PD-1 治疗期间的细胞毒性皮肤药物不良反应。Clin Cancer Res。2016;22:4023-9。9. Nayar N、Briscoe K、Penas P。Ipilimumab 难治性转移性黑色素瘤患者出现与 Nivolumab 相关的毒性表皮坏死松解症样反应和严重卫星细胞坏死。J Immunother。 2016;39:149–52。 10. Pathria M、Mundi J、Trufant J。服用易普利姆玛患者出现史蒂文斯-约翰逊综合征的病例。 Int J 案例代表图像。 2016;7:300。 11. Demirtas S、Aridi LE、Acquitter M、Fleuret C、Plantin P。莱尔抗 PD1 致命进化综合征。 Ann Dermatol Vénéréologie。 2017;144:65–6。 12. Dika E、Ravaioli GM、Fanti PA、Piraccini BM、Lambertini M、Chessa MA 等。伊匹单抗治疗转移性黑色素瘤期间的皮肤不良反应:一项前瞻性研究。欧洲皮肤病学杂志。 2017;27:266–70。 13. Ichiki Y、Iwanami T、Kakizoe K、Hamatsu T、Suehiro T、Yoneda K 等。用纳武单抗治疗的晚期或术后复发非小肺癌病例分析。 J UOEH。 2017;39:291–7。 14. Ito J、Fujimoto D、Nakamura A、Nagano T、Uehara K、Imai Y 等。阿瑞吡坦用于治疗难治性纳武利尤单抗引起的瘙痒。肺癌。 2017;109:58-61。 15. Saw S,Lee HY,Ng QS。帕博利珠单抗在非黑色素瘤患者中诱发史蒂文斯-约翰逊综合征。欧洲癌症杂志。 2017;81:237–9。 16. Vivar KL, Deschaine M, Messina J, Divine JM, Rabionet A, Patel N 等.表皮程序性细胞死亡-配体 1 表达
I.序言中的新空间技术和轨道上的商业机会导致了一个成倍增长且快速变化的全球空间行业。火箭发射并重新进入卫星和上层阶段,将气体和气溶胶散发到从地球表面到低地轨道的大气中的每一层。这些排放可能影响气候,臭氧水平,中层云彩,地面天文学和热层/电离层组成。空间行业的增长率令人印象深刻:发射和重新进入质量通量最近大约每三年增加一倍(Lawrence等,2022)。太空活动将继续增加到2040年的数量级(Ambrosio and Linares,2024年)。空间行业正在由大型低地轨道(LEO)卫星星座进行转换,因此到2040年计划的系统将需要每年推出10,000多颗卫星,并将其处置到大气中。由液态天然气(LNG)燃料发动机提供动力的重型升力火箭将在2040年到2040年(Dominguez等,2024)主导。空间行业排放到大气的范围和特征正在从根本上增长和变化(Shutler等,2022)。估计发射和再入气溶胶排放量表明,许多计划的大型LEO星座将需要从当前的3,500 Tyr -1增加到30,000 Tyr -1到2040年的发射吨位(Shutler等人,2022年)。火箭燃烧的排放将随着有效载荷而增加。努力。从汽化的空间碎片和用过的火箭阶段回归的排放量将从目前的每年1,000吨增加到每年30,000吨以上(Shulz and Glassmeier 2021)。到2040年,进入平流层的发射和再入颗粒物(黑碳和金属氧化物)排放的总全局通量将与自然的气象背景通量相媲美。这些估计值不包括新轨道中新空间系统的不确定但可能有重要的发射要求,例如Meo(中等地球轨道)和地理赤道轨道(地球赤道轨道),也可能是月球或火星探索的积极进程。面对太空飞行排放的构成和化学差距,发射和重新进入的排放率正在发生。对大型LNG火箭的排放和影响知之甚少。最近发现,构成天然平流层硫酸盐层的10%的颗粒中已经存在了重新进入空间碎屑的金属,这强调了迫切需要了解重新进入的即将到来的数量级如何影响大气(Murphy等人,2023年)。显而易见的是,总体上缺乏评估未来太空排放影响所需的科学和工程模型,工具和数据。小组确定了对现象的基本科学理解的关键差距,包括建模技术和知识差距:应对这些日益严重的关注,在2021年,Surendra P. Sharma博士,NASA AMES研究中心,组织和领导多机构工作组(Martin Ross博士,航空航天公司Martin Ross博士; Karen Rosenlof博士; Karen Rosenlof博士,NOAA/CSL,NOAA/CSL(NOAA/CSL)科罗拉多州哥伦比亚大学的Kostas Tsigaridis;
要求出版商恢复旧德里图书馆 50 多万本图书的访问权限。该市的繁荣从法院和史密斯学院等历史建筑中可见一斑。主教街上的帝国酒店和市政厅广场上的城市酒店就是著名的例子。港口在城市的发展中发挥了重要作用,从许多角度可以看到港口和二战时期的德国 U 型潜艇。卡莱尔和克雷加文等桥梁也是亮点,还有梅尔维尔酒店员工和福伊尔学院橄榄球队等日常生活的照片。据信,圣哥伦巴于公元 546 年建立修道院的地点位于坦普尔莫尔大教堂附近,该大教堂在几个世纪中因事故和冲突而遭受严重损坏并最终被摧毁。九年战争期间,残余部分被用来建造德里的防御墙。附近有一座中世纪的爱尔兰圆塔,古老的修道院演变成奥古斯丁会众。伦敦殖民者在建造这座城墙城市时,将这座修道院的一座小教堂作为他们的第一个礼拜场所。尽管遭到维京人的袭击,修道院还是没有受到重大破坏,但诺曼人在 12 和 13 世纪对德里的殖民导致它被阿尔斯特伯爵理查德·德·伯格收购。然而,在伯爵领地垮台后,盖尔人军队重新夺回了控制权。英国人在 16 世纪征服阿尔斯特的尝试没有成功,直到九年战争期间在德里建立了驻军。后来,这座城市在 1608 年叛乱期间遭到爱尔兰酋长卡希尔·奥多尔蒂爵士的袭击和摧毁。詹姆斯一世国王发起的阿尔斯特种植园导致英国和苏格兰新教徒对该地区进行殖民。 1623 年,伦敦德里城及其防御城墙获得皇家特许状,该城的名称反映了其与伦敦同业公会的联系。德里是阿尔斯特种植园皇冠上的一颗明珠,它自豪地展示了从欧洲前辈那里继承下来的精心规划的布局。最初的街道规划至今仍保存完好。值得注意的是,德里被坚固的石头和土制防御工事包围,是爱尔兰最后一座有城墙的城市,也是唯一一座古城墙完整保存的城市。该市新建筑中一个著名的地标是圣哥伦布大教堂 (1633),这是一座 17 世纪的杰作,标志着宗教改革后世界上第一座专门建造的新教大教堂。然而,德里在早期面临着许多挑战,尽管是阿尔斯特最大的城镇,但到 1680 年代人口只有 2,000 人左右。 1640 年代的动乱给这座城市带来了巨大的破坏,首先是 1641 年的爱尔兰叛乱,当时盖尔族爱尔兰叛乱分子对德里发动了一次未成功的攻击。在接下来的十年里,该城成为英国新教定居者的据点,他们组建了“拉甘军队”来抵御爱尔兰同盟军。在此期间,阿尔斯特的新教徒在如何应对英国内战的问题上存在分歧,一些人支持国王,另一些人支持议会,还有一些人支持苏格兰盟约者。盟约者的努力最终导致爱尔兰阿尔斯特军队在本伯布战役中惨败,该军队由埃奥根·鲁德·奥尼尔将军率领。尽管遭受了这一挫折,德里仍然在冲突中发挥着关键作用。1649 年,该城被效忠查理一世国王的苏格兰长老会军队围攻,而德里的议会驻军得到了乔治·蒙克和欧文·奥尼尔率领的圆颅党军队的意外联盟的救援。然而,在爱尔兰新模范军抵达后,这个临时联盟很快就反目成仇。 1650 年,议会党人在多尼戈尔附近的斯卡里福利斯战役中获胜,阿尔斯特战争终于结束。一个世纪后,德里成为英国光荣革命的战场,1688 年,詹姆斯二世被奥兰治的威廉废黜。尽管天主教徒普遍支持詹姆斯,但阿尔斯特的许多新教徒却暗中支持威廉,导致新教驻军部署在德里和附近的恩尼斯基林。大门猛地关闭,标志着 1689 年 4 月德里围城战的开始。詹姆斯二世国王试图在威廉与詹姆斯党在爱尔兰的战争中夺回王位,他来到了这座城市,却遭到一些守军的阻拦甚至开火。围城持续了艰苦的 105 天,炮火、饥荒和疾病给被围城者和围城者都造成了毁灭性的损失。最终,一艘救援船在 7 月下旬突破了路障,结束了给这座城市的传统留下印记的磨难。这座城市在 18 世纪重建,许多乔治亚风格的房屋至今仍屹立不倒。后来,它成为爱尔兰移民前往北美的重要港口,其纺织业在 19 世纪中叶蓬勃发展。20 世纪初,德里在争取爱尔兰独立的斗争中面临动荡,包括 1920 年 7 月统一派和天主教徒之间的暴力宗派冲突。德里动荡的历史揭开 1921 年,爱尔兰分治后,德里成为一座边境城市,其在多尼戈尔郡的经济腹地被切断。1932 年阿梅莉亚·埃尔哈特的到访为这座城市带来了急需的关注。二战期间,它在大西洋战役中发挥了重要作用,皇家海军驻扎在那里,美国士兵登陆。 20 世纪 60 年代末,德里因制度歧视和选区划分不公而引发争议。尽管民族主义者占多数,但统一主义者因选举边界而控制着这座城市。高失业率和住房条件恶劣是普遍存在的问题。该市反对联合政府的斗争导致民权示威被宣布为非法并遭到暴力镇压。1969 年学徒男孩游行引发了博格赛德战役,从而引发了动乱。1972 年血腥星期天,13 名手无寸铁的平民在民权游行中被英国伞兵射杀。该市一直是共和准军事组织的中心,直到 1972 年官方爱尔兰共和军宣布停火。临时爱尔兰共和军继续袭击安全目标并轰炸了德里的商业中心。马丁·麦吉尼斯等知名人物参与了这场斗争。20 世纪 80 年代,爱尔兰民族解放军在该市发展壮大,1981 年爱尔兰绝食抗议期间有三名囚犯死亡。位于伦敦德里郡的德里在 20 世纪 90 年代末经历了暴力事件的减少,但街头骚乱仍在发生。与贝尔法斯特和其他地区相比,德里的流血事件较少。根据艾德·马洛尼在《爱尔兰共和军秘史》中的记述,早在 1991 年,德里就达成了事实上的停火协议。这一事件有助于该市暴力事件的减少。德里因参与北爱尔兰问题而闻名全球,但根据公民信托的说法,它也是英国最适合居住的城市之一。德里监狱的残存塔楼和圣哥伦巴教堂和大教堂等历史地标是该市历史上值得注意的方面。德里监狱的剩余塔楼和圣哥伦巴教堂和大教堂等历史地标都是该市历史的显著部分。德里监狱的剩余塔楼和圣哥伦巴教堂和大教堂等历史地标都是该市历史的显著部分。