“长雨”(3月至五月)2025季节的气候前景和2024年10月至12月的“短雨”季节ref No:kmd/fcst/fcst/01-2025/so/01发行日期:31/01/2025 1 1.1 1.1 3月2025年3月202日的前景5月3日3月5日。季节表明,预计维多利亚湖盆地,南裂谷的降雨量接近于平均水平。 预计将在裂谷(包括内罗毕县)以东(包括内罗毕县)的高地,西北地区,沿海地区,东南低地和裂谷谷以西高地的孤立地区的中部裂谷中降雨。 预计在季节内和北海岸的平均降雨量将低于平均水平,在时间和空间中,有几个地区的降雨量总体上可能会降低。 季节预计将以偶尔的干咒语为特征。 在该季节,该国某些地区可能会遇到风暴。 降雨的峰值预计将在大多数地区为4月,除了预计五月峰值的沿海地带。“长雨”(3月至五月)2025季节的气候前景和2024年10月至12月的“短雨”季节ref No:kmd/fcst/fcst/01-2025/so/01发行日期:31/01/2025 1 1.1 1.1 3月2025年3月202日的前景5月3日3月5日。季节表明,预计维多利亚湖盆地,南裂谷的降雨量接近于平均水平。预计将在裂谷(包括内罗毕县)以东(包括内罗毕县)的高地,西北地区,沿海地区,东南低地和裂谷谷以西高地的孤立地区的中部裂谷中降雨。预计在季节内和北海岸的平均降雨量将低于平均水平,在时间和空间中,有几个地区的降雨量总体上可能会降低。季节预计将以偶尔的干咒语为特征。在该季节,该国某些地区可能会遇到风暴。降雨的峰值预计将在大多数地区为4月,除了预计五月峰值的沿海地带。
图1:澳大利亚季节性降雨区。中位年降雨量(基于1900年至1999年的100年期)和季节性降雨的发生(与5月至10月相比,11月至4月的降雨量比中位降雨的比率)用于识别六个主要区域;夏季主导(潮湿的夏季,干燥的冬季),夏季(潮湿的夏季,低冬季降雨),统一(无晴朗的季节性),冬季(潮湿的冬季,低夏降雨),冬季占主导地位(潮湿的冬季,干燥的夏季)和干旱(低降雨)。来源:气象局http://www.bom.gov.au/jsp/ncc/climate_averages/climate-classifications/index.jsp。2图2:1900年至2022年之间的新南威尔士州和澳大利亚首都地区的年降雨量。1961 - 1990年之间的平均降雨量为556.2mm。资料来源:气象局; http://www.bom.gov.au/climate/ 3图3:2000年至2019年之间的4月至10月的降雨十分位于1900年至2019年的整个降雨记录。注意最近的湿年(2020,2021,2022)不包括在内。来源:http://www.bom.gov.au/state-of-the-climate/。4图4:高分辨率(季节性 - 年分辨率)氢气候(降雨和/或温度)代理的位置。来源:Steiger等。24 5图5:在1000至2000 CE之间的每105年期间干燥,中性和潮湿年的比例。来源:Flack等。21 6图6:天气尺度天气的示意图和气候变化模式,对于新南威尔士州的降雨至关重要。来源:气象局。来源:https://takvera.blogspot.com/2014/01/warming-may-spike-when-pacific-decadal.html。8图8:过去2000年的IPO时间赛。a)扩展法律圆顶IPO重建和Buckley等。43 IPO重建,从1300年至2011年,b)过去2000年。 黑线是使用Folland索引的观察性IPO。 来源:Vance等人42 9图9:LaNiña和ElNiño事件期间的平均步行者循环模式,海面温度和降雨反应的示意图。 11图10:ENSO与澳大利亚降雨的关系。 每个季节的南部振荡指数与澳大利亚降雨量之间的相关性a)DJF-夏季,b)妈妈 - 秋天,c)jja -jja -winter,d)儿子 - 春天。 仅显示95%水平的相关性。 数据周期:1889年至2006年。 来源:Risbey等5。 12图11:在开始阶段的Niño4指数与中太平洋埃尔尼诺事件和东太平洋厄尔尼诺事件的成熟阶段之间的皮尔逊相关系数。 来源:Freund等人61 13图12:在IOD正期和负面事件期间,平均步行者循环模式,海面温度和降雨响应的示意图。 来源:气象局。 16图13:南环模式。 a)南半球的年平均地面风,显示了极地伊斯特利,南极北部南大洋的中纬度西风腰带以及沿澳大利亚东部海岸线的东南贸易风。 使用ERE5 87重新分析表面风(10m)创建的数字。 来源:Hendon等。43 IPO重建,从1300年至2011年,b)过去2000年。黑线是使用Folland索引的观察性IPO。来源:Vance等人42 9图9:LaNiña和ElNiño事件期间的平均步行者循环模式,海面温度和降雨反应的示意图。11图10:ENSO与澳大利亚降雨的关系。每个季节的南部振荡指数与澳大利亚降雨量之间的相关性a)DJF-夏季,b)妈妈 - 秋天,c)jja -jja -winter,d)儿子 - 春天。仅显示95%水平的相关性。数据周期:1889年至2006年。来源:Risbey等5。12图11:在开始阶段的Niño4指数与中太平洋埃尔尼诺事件和东太平洋厄尔尼诺事件的成熟阶段之间的皮尔逊相关系数。来源:Freund等人61 13图12:在IOD正期和负面事件期间,平均步行者循环模式,海面温度和降雨响应的示意图。来源:气象局。16图13:南环模式。a)南半球的年平均地面风,显示了极地伊斯特利,南极北部南大洋的中纬度西风腰带以及沿澳大利亚东部海岸线的东南贸易风。使用ERE5 87重新分析表面风(10m)创建的数字。来源:Hendon等。赤道膨胀和中纬度西风带(由蓝色和红色箭头指示)的极点收缩的变异性以SAM为特征。b)季节性马歇尔山姆指数。来源:https://climatedataguide.ucar.edu/climate-data/marshall-southern-nular-annular-mode-mode-sam-index-station-17图14:SAM对澳大利亚每日降雨的影响。每个澳大利亚季节正面和负SAM(SAM+减去SAM-)之间的每日降雨(阴影)和850-HPA风(向量)差异。在每个面板的右上列出了SAM的正和负阶段的天数。仅在复合每日异常与95%水平的零差异显着不同的情况下提供阴影。89 18图15:使用Marshall指数,代表代表印度洋偶极子的ElniñoSouthern振荡和偶极模式指数(DMI)的Marshall指数,海洋Niño指数(ONICNIño指数(ONI))的季节平均指数。年对应于十二月。*注意MAM图是年 + 1(例如MAM 2009代表2010年3月至5月的时期)。改编自Udy等人。82 21图16:东海岸旋风子类型。左 - 旋风簇轨道。右 - 第75个百分点降雨。来源:Gray等。115 22
摘要:X 射线计算机断层扫描 (CT) 已成为检测金属增材制造 (MAM) 部件内部缺陷(如孔隙度、夹杂物、未熔合等)的首选无损检测 (NDT) 方法。此外,由于质量标准的建立以及制造系统、加工路线和检测手段的成熟,这种制造技术在航空航天领域的应用也日益广泛。例如,欧洲空间标准化合作组织制定了一项特定标准(由欧洲航天局 (ESA) 协调),用于 AM 质量保证、加工和空间应用要求 (ECSS-Q-ST-70-80C),表明应特别对关键结构和功能部件进行 CT 检查。同样,大型 OEM(原始设备制造商)也制定了自己的标准,将 CT 视为关键部件的强制性 NDT 方法,但其他技术(如渗透检测 (PT)、数字射线照相术 (DR) 或目视检查 (VI))也被认为是确保部件质量所必需的。本文介绍了硬件鉴定中不同 NDT 的各种应用示例:CHEOPS 太空任务的钛支架;PROBA3 的铝螺旋天线;JUpiter ICy 卫星探测器任务 (JUICE) 的铝支架;或其他航空部件,如 Clean Sky 2 IADP 演示器的铝整流罩和 RACER 直升机的结构钛襟翼配件。上述案例不仅将从检查的执行情况进行分析,还将从专门为 AM 开发或适应这种新型制造技术的不同标准和要求的应用进行分析。
我在弗洛里亚诺波利斯的朋友们: Alice, Aline, Billy, Bruna, Bruninho, China, Clóvis, Fernando, Fran, Gil, Gui, Lika, Lucas, Luli, Ismael, Jeca, Jonathan, Ju, Jupi, Karina, Karol, Mari, Maria Clara, Monka, Nelito, Päülïnhö, Pedro, Priscila, Rebeca, Rodrigo, Surivan, Suzi,蒂亚戈、图尔科、维森特、西奎尼奥;我在其他地方的朋友:Adom、Alan、Alex、Allan、Aliny、Amanda、André(两人)、Anita、Ariel、Barbara(两人)、Barth、Bola、Brunão、Bruno、Buzina、Cainã、Camila、Carol、Carlão、Catarina、Cauê、Ceci、CH、Chapolla、Clara、Dandan、David、Deco、Diana、Digo、Du、Éderson、Emerson、埃里卡、埃斯特万、费利皮尼奥、费尔南多、费尔南达、费拉兹、福卡、富纳里、加巴、加里、杰尔马诺、吉尔森、乔治亚、乔瓦纳、吉、恩里克、赫里克、伊阿古、尤里、朱莉娅、朱莉安娜、若昂保罗、乔纳斯、豪尔赫、乔、卡蒂亚、克莱伯、劳拉、莱蒂西亚、卢利·弗朗西斯、路易斯、路易莎、利奥、卢卡斯(两人)、卢卡斯、梅布尔、马尔福、妈妈、马塞洛、马塞拉、马卡、马里奥、马斯、蒙泰罗、纳韦尔、尼克、尼古拉斯、努诺、巴勃罗、保罗、保利尼奥、佩德里尼奥、佩罗拉、波尔科、拉法、雷南、罗比尼奥、罗德、鲁斯图克、所罗门、
2024 年 10 月 3 日致,国家证券交易所有限公司上市部,交易所广场,C-1,G 座,班德拉 (E),班德拉库尔拉综合楼,孟买 - 400 051 股票代码 - INNOMET 尊敬的先生/女士,主题:截至 2024 年 9 月 30 日的半年不适用提交关联方披露。参考:印度证券交易委员会 (SEBI) 2015 年《上市义务和披露要求》条例第 23(9) 条。关于上述主题,我们想通知您,公司已在 NSE EMERGE 平台上上市,并根据印度证券交易委员会 (SEBI) 2015 年《上市义务和披露要求》条例第 15(2) 条的规定,遵守第 17、17A、18、19、20、21、22、23、24、24A、25 条中规定的规定, 26、27 和第 46 条第 (2) 款第 (b) 至 (i) 和 (t) 项以及印度证券交易委员会 (SEBI)(上市义务和披露要求)条例附表 V 第 C、D 和 E 段不适用于已在中小企业交易所上市其指定证券的上市实体。 因此,作为在中小企业交易所上市的实体,截至 2024 年 9 月 30 日的半年内,公司不遵守印度证券交易委员会 (SEBI)(上市义务和披露要求)条例 2015 年第 23(9) 条的规定。请将其记入您的记录。 谢谢您, 此致, Innomet Advanced Materials Limited ________________________________________ Vinay Choudary Chilakapati 董事总经理 DIN:08444644
100% 列表 已知需要检查的材料清单 4Ms:人力、机械、材料和方法 ADs:适航指令 AFI:法航工业公司 AMM:飞机维护手册 AML:飞机维护日志 AMP:飞机维护计划 AMS:阿姆斯特丹史基浦机场 AOG:飞机停在地面(负面) ATL:飞机技术日志 BM:业务经理 BMO:基地维护官 BO:后台办公室 BOW:工作清单 CML:客舱维护日志 CMS:机组管理系统 CSC:客户支持服务 DDs:递延缺陷 E&M:工程和维护 EASA:欧洲航空安全局 EATL:电子飞机技术日志 EOs:工程订单 ETR:估计维修时间 FAA:美国联邦航空管理局 FTE:全职员工 FO:前台 GWK:地面工程师 IKB:内部成本计算 IPC:已安装零件目录JIC:作业中断卡/作业指令卡 JAR:联合航空要求 JSS:作业卡汇总表(IT 调度工具 - 后台) KLM:荷兰皇家航空公司 LMO:航线维护员 LRP:长期计划 MAM:维护授权手册 MC:物资中心(正式名称为 MSSD/MSSC) MCC:维护控制中心 MEL:最低设备清单 MO:修改 MOM:维护组织手册 MOO:维护操作员 MPD:维护计划文件 MPID:Maintenix 计划信息文件 MPM:维护绩效会议 MPP:主生产计划 MPP:多项目计划
100% 清单 检查中已知需要的材料清单 4M:人力、机械、材料和方法 AD:适航指令 AFI:法航工业公司 AMM:飞机维护手册 AML:飞机维护日志 AMP:飞机维护计划 AMS:阿姆斯特丹史基浦机场 AOG:飞机停在地面(负面) ATL:飞机技术日志 BM:业务经理 BMO:基地维护官 BO:后台办公室 BOW:工作清单 CML:客舱维护日志 CMS:机组管理系统 CSC:客户支持服务 DD:递延缺陷 E&M:工程和维护 EASA:欧洲航空安全局 EATL:电子飞机技术日志 EO:工程订单 ETR:预计维修时间 FAA:美国联邦航空管理局 FTE:全职员工 FO:前台 GWK:地面工程师 IKB:内部成本核算 内部成本计算 IPC:已安装零件目录 JIC:作业中断卡 / 作业指导卡 JAR:联合航空要求 JSS:作业卡汇总表(IT 调度工具 - 后台) KLM:荷兰皇家航空公司 LMO:航线维护员 LRP:长期计划 MAM:维护授权手册 MC:物资中心(正式名称为 MSSD/MSSC) MCC:维护控制中心 MEL:最低设备清单 MO:修改 MOM:维护组织手册 MOO:维护操作员 MPD:维护计划文件 MPID:Maintenix 计划信息文件 MPM:维护绩效会议 MPP:主生产计划 MPP:多项目计划
Agriculture Sector Development Support Programme ASDSP Annual Development Plan ADP Arid and Semi-Arid Lands ASAL Central Bank of Kenya CBK Civil Society Organizations CSO County Climate Change Action Plan CCCAP Climate Change Unit CCU Climate Act Fund CAF Community Based Organizations CBO Community Forest Association CFA Conference of the Parties COP County Chief Officer CCO County Climate Action Plan CCAP County Climate Change Action Plan CCCAP County Climate Change Funds CCCFs County Executive Committee Member CECM County Information Services CIS County Integrated Development Plan CIDP Disaster Risk Management DRM Environment Impact Assessment EIA feed-in-tariff FIT Financial Year FY Financially Locally Led Climate Change Action FlloCCA Foot and Mouth Disease FMD Government of Kenya GOK Green Houses Gases GHG Integrated Water Resources Management IWRM Internally Displaced Persons IDPs Kenya Agricultural and Livestock Research Organization KALRO Kenya Climate Smart Agriculture KCSA Kenya Climate Smart Agriculture Strategy KCSAS Kenya Devolution Support Program KDSP Kenya Forest Service KFS Kenya Forestry Research Institute KEFRI Kenya Meteorological Department KMD Kenya National Bureau of Statistics KNBS Kenya Urban Support Program KUSP Kenya Wildlife Service KWS Lumpy Skin Disease LSD March April May rains MAM Measurement, Reporting, and Verification MRV
缩写:165t,位于165位的苏氨酸(突变体); A165,位于165位的丙氨酸(野生型); AAV,腺相关病毒; ACTB,β-肌动蛋白; Alt,丙氨酸氨基转移酶; AST,天冬氨酸氨基转移酶; ATF6,激活转录因子6; CHX,环己酰亚胺; CQ,氯喹; DBEQ,Dibenzylquinazoline-2,4-二胺; ECL,增强的化学发光; ERAD,内质网相关降解; FACL4,脂肪酸-COA连接酶4; GCKR,葡萄糖酶调节剂; GWAS,全基因组协会研究; HMARC1,人线粒体减少的组件1; IP,免疫沉淀; IRE1,内切核酸酶肌醇提高酶1; ITR,反向终端重复;妈妈,线粒体相关的膜; MARC1,线粒体减少氨基氧霉素的成分1; MASLD,代谢功能障碍相关的脂肪分裂肝病; Mboat7,包含7的膜结合的O-酰基转移酶结构域; MMARC1,小鼠线粒体减少的成分1; ORO,油红色O染色; PERK,蛋白激酶R样性内质网(ER)激酶; PNPLA3,含patatin样磷脂酶结构域的蛋白3; RTA,相对总丰度; Ru,相对单位; SD,标准偏差; SDS,十二烷基硫酸钠; SDS-PAGE,十二烷基硫酸钠 - 聚丙烯酰胺凝胶电泳; SEM,平均值的标准误差; TM6SF2,跨膜6超家族成员2; UBC,泛素C; UBE2E1,泛素结合酶E2-E1; UBE3EC,泛素蛋白连接酶E3C; UPR,展开的蛋白质反应; UPS,泛素介导的蛋白酶体(降解)系统; VCP,含勇气的蛋白质。
摘要 CRISPR-Cas9系统是一种强大的技术,可以快速、精确、有效地编辑真核生物基因组。该工具彻底改变了我们修改从微生物到哺乳动物的不同生物基因组的方式。通过使用 CRISPR-Cas,不仅可以引入突变来研究某个基因的缺失,还可以让我们编辑基因组以引入荧光标记甚至编辑表观基因组。 CRISPR-Cas9 协议基于将 Cas9 蛋白和引导 RNA 与同源模板一起引入细胞。在本章中,我们介绍了将该基因组编辑技术应用于不同模型生物的详细方案,例如线虫秀丽隐杆线虫、果蝇细胞系、斑马鱼和小鼠卵母细胞。我们希望本章能够让不同的研究小组在他们的实验模型中应用这项强大的技术。