Richard A, Forshee, PhD, 1 Elizabeth R Smith, BS, 2 Zhiruo Wan, MS 2 , Kandace L Amend, PhD, MPH, 3 Alex Secora, PhD 4 , Djeneba Audrey Djibo, PhD, MSBME, 5 Kamran Kazemi, BS, 2 Jennifer Song, MA, MURP 3 , Lauren E Parlett, PhD 6 ,John D Seeger,DRPH,PharmD 3,Nandini Selvam,PhD,MPH 4,Cheryl N McMahill-Walraven,PhD,MSW,MSW,5 Mao Hu,BS,2 Yoganand Chillarige,MPA 2,Steven A Anderson,Phd Anderson,PhD,MPP 1
尊敬的新南威尔士大学化学工程社区成员和支持者们,作为历史悠久的全球研究强校,新南威尔士大学化学工程学院在 2022 年取得了创纪录的成绩。今年年初,联邦政府为新南威尔士大学颁发了 5000 万美元的开拓者奖,以加速澳大利亚的清洁能源转型。Rose Amal 教授的 Power-to-X 将在该项目中发挥重要作用,我们很高兴能成为如此有价值且前所未有的计划的一部分。我校还获得了五项享有盛誉的澳大利亚研究委员会 (ARC) 奖学金,分别授予 Cyrille Boyer 教授、Kang Liang 博士、Zhaojun Han 博士、Emma Lovell 博士和 Rahman Daiyan。Cyrille Boyer 教授的 ARC 桂冠奖学金将使他能够继续进行世界领先的 (可) 可编程材料光驱动制造研究。我校还很高兴得知联邦政府拨款 3500 万美元在新南威尔士大学建立 ARC 碳科学与创新卓越中心。该卓越中心将由戴黎明教授领导,其他新南威尔士大学化学工程学院的学者将担任首席研究员,包括 Rose Amal 教授、毛广昭教授和 Nick Bedford 博士。最后但同样重要的是,我校获得了创纪录数量的 ARC 发现项目资助,这是政府对个人研究项目的首要支持。在八个 ARC 发现项目中,有四个由我校学者领导,包括由 Jason Scott 副教授和 Rose Amal 教授领导的“将二氧化碳串联光催化转化为高价值碳氢化合物产品”;由 Per Zetterlund 教授领导的“序列定义聚合物自动合成先进材料”;由毛广昭教授领导的“示踪功能化纳米粒子的合成与表征”;以及由 Kourosh Kalantar-Zadeh 教授领导的“获取用于低温化学反应的液态贵金属”。2022 年对于新南威尔士大学化学工程学院来说是一个真正激动人心的时刻,我们都期待着发现 2023 年会发生什么。感谢我们所有的学术和专业员工、学生、合作伙伴和支持者,让 2022 年成为如此成功和有意义的一年。祝一切顺利,毛光照教授
参与 VBID 模式的 MAO 在 2024 年 CY 免除了 LIS 类别 1 和 2 受益人的所有药物的全部 LIS 自付费用,这提醒我们,这些参保人无法从覆盖缺口阶段过渡到灾难阶段。CMS 已确定这是通货膨胀削减法案 (IRA) 变化的结果,该法案在 2024 年的灾难阶段取消了受益人费用分摊,随后导致灾难阶段的低收入费用分摊补贴 (LICS) 被取消。由于 VBID 模型福利不符合实际自付费用 (TrOOP) 资格,并且在计算索赔的总 LICS 后应用,因此受益人在 2023 年跨式索赔中积累的 TrOOP 超过年度自付费用 (OOP) 门槛,无法在 2024 年跨式索赔中积累足够的 TrOOP 来满足同一跨式索赔的 OOP 门槛。值得注意的是,此问题仅发生在 2024 年跨式索赔,因为从 2025 年跨式索赔开始,VBID 模型对 LIS 共付额的买断将计入 TrOOP。仅适用于 2024 年跨式索赔,因此模型福利的应用不会阻止受益人进入灾难阶段,我们将模型下现有的 D 部分豁免解释为授权 CMS 修改灾难性跨式索赔的覆盖范围差距中 LICS 金额的确定方式。我们相信,这将导致参与 MAO 的实际责任成为针对目标 LIS 参保者的费用分摊减少,作为模范福利调整
完整作者列表: Nasiruddin, Md;东北大学,化学 Waizumi, Hiroki;东北大学,化学系 Takaoka, Tsuyoshi;东北大学,先进材料多学科研究中心 Wang, Zhipeng;东北大学,化学 Sainoo, Yasuyuki;东北大学 - Katahira 校区,先进材料多学科研究中心 Mamun, Muhammad Shamim Al;库尔纳大学,化学 Ando, Atsushi;国家先进工业科学技术研究所,纳米电子研究所 FUKUYAMA, MAO;东北大学,先进材料多学科研究中心;Hibara, Akihide;东北大学,先进材料多学科研究中心 Komeda, Tadahiro;东北大学,先进材料多学科研究中心
[1] H.-K。 Mao,B。Chen,J。Chen,K。Li,J.-F。 Lin,W。Yang和H. Zheng,《高压科学技术》的最新进展,Matter Radiat。极端1,59(2016)。[2] C. Buzea和K. Robbie,组装了超导元素的难题:评论,超级跟踪。SCI。 技术。 18,R1(2004)。 [3] J. Song,G。Fabbris,W。Bi,D。Haskel和J. Schilling,元素ytterbium Metal的压力诱导的超导性,物理。 修订版 Lett。 121,037004(2018)。 [4] J. Hamlin,高压高金属元素的超导性,物理。 c(阿姆斯特丹,内斯。) 514,59(2015)。 [5] C. Zhang,X。 He,C。Liu,Z。Li,K。Lu,S。Zhang,S。Feng,X。Wang,Y。Peng,Y。 Long,R。Yu,L。Wang,V。Prakapenka,S。Chariton,Q.Li,H。Liu,C。Chen和C. Jin,记录了Nat Titanium的高TC元素超导性。 社区。 13,5411(2022)。 [6] Li和W. Yang,TC高达23.6 K,在Megabar压力下的过渡金属δ -Ti相中的鲁棒超导性,物理。 修订版 b 105,224511(2022)。 [7] J. Ying,S。Liu,Q.Lu,X。Wen,Z。Gui,Y。Zhang,X。Wang,J。 sun和X. Chen,在260 GPA的压力下,将高36 K过渡温度记录到元素scandium的超导状态。 修订版 Lett。 130,256002(2023)。 修订版 b 83,220512(2011)。 修订版 b 78(2008)。 极端5,038101(2020)。SCI。技术。18,R1(2004)。 [3] J. Song,G。Fabbris,W。Bi,D。Haskel和J. Schilling,元素ytterbium Metal的压力诱导的超导性,物理。 修订版 Lett。 121,037004(2018)。 [4] J. Hamlin,高压高金属元素的超导性,物理。 c(阿姆斯特丹,内斯。) 514,59(2015)。 [5] C. Zhang,X。 He,C。Liu,Z。Li,K。Lu,S。Zhang,S。Feng,X。Wang,Y。Peng,Y。 Long,R。Yu,L。Wang,V。Prakapenka,S。Chariton,Q.Li,H。Liu,C。Chen和C. Jin,记录了Nat Titanium的高TC元素超导性。 社区。 13,5411(2022)。 [6] Li和W. Yang,TC高达23.6 K,在Megabar压力下的过渡金属δ -Ti相中的鲁棒超导性,物理。 修订版 b 105,224511(2022)。 [7] J. Ying,S。Liu,Q.Lu,X。Wen,Z。Gui,Y。Zhang,X。Wang,J。 sun和X. Chen,在260 GPA的压力下,将高36 K过渡温度记录到元素scandium的超导状态。 修订版 Lett。 130,256002(2023)。 修订版 b 83,220512(2011)。 修订版 b 78(2008)。 极端5,038101(2020)。18,R1(2004)。[3] J.Song,G。Fabbris,W。Bi,D。Haskel和J. Schilling,元素ytterbium Metal的压力诱导的超导性,物理。修订版Lett。 121,037004(2018)。 [4] J. Hamlin,高压高金属元素的超导性,物理。 c(阿姆斯特丹,内斯。) 514,59(2015)。 [5] C. Zhang,X。 He,C。Liu,Z。Li,K。Lu,S。Zhang,S。Feng,X。Wang,Y。Peng,Y。 Long,R。Yu,L。Wang,V。Prakapenka,S。Chariton,Q.Li,H。Liu,C。Chen和C. Jin,记录了Nat Titanium的高TC元素超导性。 社区。 13,5411(2022)。 [6] Li和W. Yang,TC高达23.6 K,在Megabar压力下的过渡金属δ -Ti相中的鲁棒超导性,物理。 修订版 b 105,224511(2022)。 [7] J. Ying,S。Liu,Q.Lu,X。Wen,Z。Gui,Y。Zhang,X。Wang,J。 sun和X. Chen,在260 GPA的压力下,将高36 K过渡温度记录到元素scandium的超导状态。 修订版 Lett。 130,256002(2023)。 修订版 b 83,220512(2011)。 修订版 b 78(2008)。 极端5,038101(2020)。Lett。121,037004(2018)。[4] J. Hamlin,高压高金属元素的超导性,物理。c(阿姆斯特丹,内斯。)514,59(2015)。 [5] C. Zhang,X。 He,C。Liu,Z。Li,K。Lu,S。Zhang,S。Feng,X。Wang,Y。Peng,Y。 Long,R。Yu,L。Wang,V。Prakapenka,S。Chariton,Q.Li,H。Liu,C。Chen和C. Jin,记录了Nat Titanium的高TC元素超导性。 社区。 13,5411(2022)。 [6] Li和W. Yang,TC高达23.6 K,在Megabar压力下的过渡金属δ -Ti相中的鲁棒超导性,物理。 修订版 b 105,224511(2022)。 [7] J. Ying,S。Liu,Q.Lu,X。Wen,Z。Gui,Y。Zhang,X。Wang,J。 sun和X. Chen,在260 GPA的压力下,将高36 K过渡温度记录到元素scandium的超导状态。 修订版 Lett。 130,256002(2023)。 修订版 b 83,220512(2011)。 修订版 b 78(2008)。 极端5,038101(2020)。514,59(2015)。[5] C. Zhang,X。He,C。Liu,Z。Li,K。Lu,S。Zhang,S。Feng,X。Wang,Y。Peng,Y。Long,R。Yu,L。Wang,V。Prakapenka,S。Chariton,Q.Li,H。Liu,C。Chen和C. Jin,记录了Nat Titanium的高TC元素超导性。社区。13,5411(2022)。[6] Li和W. Yang,TC高达23.6 K,在Megabar压力下的过渡金属δ -Ti相中的鲁棒超导性,物理。修订版b 105,224511(2022)。[7] J. Ying,S。Liu,Q.Lu,X。Wen,Z。Gui,Y。Zhang,X。Wang,J。sun和X. Chen,在260 GPA的压力下,将高36 K过渡温度记录到元素scandium的超导状态。修订版Lett。 130,256002(2023)。 修订版 b 83,220512(2011)。 修订版 b 78(2008)。 极端5,038101(2020)。Lett。130,256002(2023)。修订版b 83,220512(2011)。修订版b 78(2008)。极端5,038101(2020)。[8] M. Sakata,Y。Nakamoto,K。Shimizu,T。Matsuoka和Y. Ohishi,在216 GPA的压力下,CA-VII的超导状态低于29 K的临界温度。[9] M. Debessai,J。J。Hamlin和J. S. Schilling,Trivalentd-Electron超导体SC,Y,LA和LU中TC的压力依赖性的比较与Megabar压力,物理。[10] E. Gregoryanz,C。Ji,P。Dalladay-Simpson,B。Li,R。T。Howie和H.-K。毛,您一直想知道的有关金属氢的一切,但害怕问,径向。[11] P. Loubeyre,F。Occelli和P. Dumas,同步红外光谱证据,证明可能过渡到金属氢,自然577,631(2020)。[12] C. Ji,B。Liu,W.N Liu,J.,A。Majumdar,W。Luo,R。Ahuja,J。Shu,J。Wang,J。Wang,S。Sinogeikin,Y.Meng,V。B. Prakapenka,E。Greenberg,E。Greenberg,R.Xu,R.Xu,R.Xu,X. Huang,W。Yang,W。Yang,G。Shen,W。Shen,W。L. L. Mao,W。Mao和H.毛,氢中的超高压等值电子过渡,自然573,558(2019)。[13] M. I. Eremets,A。P。Drozdov,P。Kong和H. Wang,在350 GPA高于350 GPA的压力下的半金属分子氢。物理。15,1246(2019)。[14] H. Y. Geng,关于金属氢的公开辩论,以提高高压研究,物质辐射。极端2,275(2017)。[15] C. Ji,B。Li,W。Liu,J。S. Smith,A。Björling,A。Majumdar,W。Luo,R。Ahuja,J。Shu,
2024年4月1日 - 卫生部 - Gov.pl。的偿还药物,特殊营养目的地的食品和医疗设备的食品https://www.gov.pl/web/zzdrowie/obwieńka-ministra--health-health-health-z-dnia-18-marca-2024-r-w-sprawie-wykazu-wykazu-refundne-lefundne-lekow-lekow-srodkow-srodkow-srodkow-srodkow-srodkow-srodkne-spo@------------------ Edical(19.05.2024)。8。pilimumab-产品特性摘要。https://www.ema.europa.eu/en/documents/product- inofernal/yervoy-epar-productive-information_en.pdf(16.06.2022)。 9。 nivolumab-产品炭分摘要。 https://www.ema.europa.eu/en/documents/product- inofern/opdivo-epar-productive-information_en.pdf(16.06.2022)。 10。 Somarouthu B,Lee SI,Urban T等。 与免疫相关的肿瘤反应评估标准:全面综述。 br j radol。 2018; 91(1084):20170457,doi:10.1259/bjr.20170457,PubMed索引:29172675。 11。 Seymour L,Bogaerts J,Perrone A等。 恢复工作组。 IRECIST:用于测试免疫治疗药的试验中的响应标准指南。 lancet oncol。 2017; 18(3):E143-E152,doi:10.1016/s1470-2045(17)30074-8,在PubMed索引:28271869。 12。 Mao,Chen D,Duan S等。 总统淋巴细胞 - 单位细胞比率对高级上皮癌的预后影响:一种荟萃分析。 癌细胞 2018; 18:201,doi:10.1186/s12935-018-0698-5,在PubMed中索引:30534002。 13。 Templeton AJ,Ace O,McNamara MG等。https://www.ema.europa.eu/en/documents/product- inofernal/yervoy-epar-productive-information_en.pdf(16.06.2022)。9。nivolumab-产品炭分摘要。https://www.ema.europa.eu/en/documents/product- inofern/opdivo-epar-productive-information_en.pdf(16.06.2022)。10。Somarouthu B,Lee SI,Urban T等。与免疫相关的肿瘤反应评估标准:全面综述。br j radol。2018; 91(1084):20170457,doi:10.1259/bjr.20170457,PubMed索引:29172675。11。Seymour L,Bogaerts J,Perrone A等。恢复工作组。IRECIST:用于测试免疫治疗药的试验中的响应标准指南。lancet oncol。2017; 18(3):E143-E152,doi:10.1016/s1470-2045(17)30074-8,在PubMed索引:28271869。12。Mao,Chen D,Duan S等。 总统淋巴细胞 - 单位细胞比率对高级上皮癌的预后影响:一种荟萃分析。 癌细胞 2018; 18:201,doi:10.1186/s12935-018-0698-5,在PubMed中索引:30534002。 13。 Templeton AJ,Ace O,McNamara MG等。Mao,Chen D,Duan S等。总统淋巴细胞 - 单位细胞比率对高级上皮癌的预后影响:一种荟萃分析。癌细胞2018; 18:201,doi:10.1186/s12935-018-0698-5,在PubMed中索引:30534002。13。Templeton AJ,Ace O,McNamara MG等。血小板与淋巴细胞比率在实体瘤中的预后作用:系统评价和荟萃分析。癌症流行病生物标志物上一篇。2014; 23(7):1204–1212,doi:10.1158/1055-9965.EPI-14-0146,在PubMed中索引:24793958。
帕金森氏病(PD)是与运动障碍有关的进行性神经系统疾病,大约有2%的65岁以上的人受到这种状况的影响。PD患者壳核和尾状核中的1,2多巴胺(DA)水平降低。 多巴胺能神经元在Nigra pars compacta和细胞质中有选择地降低。 这种疾病的症状包括带有骨核蛋白的路易尸体。 3 - 5虽然PD的确切触发因素尚不清楚,但许多研究表明,除了DA耗竭外,诸如神经肿瘤,蛋白质聚集,神经亲子因素缺乏支持,氧化应激,氧化应激,氧化症状失调,自噬 - 溶液途径的失调的其他因素,以及自噬 - 溶酶体途径的失调,并促进了效果效果效果效果效果效果。 1960年代标志着单胺氧化酶(MAO)抑制剂的引入,但含有3,4-二羟基苯胺(L -DOPA)的小生物分子已用于治疗PD症状壳核和尾状核中的1,2多巴胺(DA)水平降低。多巴胺能神经元在Nigra pars compacta和细胞质中有选择地降低。这种疾病的症状包括带有骨核蛋白的路易尸体。3 - 5虽然PD的确切触发因素尚不清楚,但许多研究表明,除了DA耗竭外,诸如神经肿瘤,蛋白质聚集,神经亲子因素缺乏支持,氧化应激,氧化应激,氧化症状失调,自噬 - 溶液途径的失调的其他因素,以及自噬 - 溶酶体途径的失调,并促进了效果效果效果效果效果效果。1960年代标志着单胺氧化酶(MAO)抑制剂的引入,但含有3,4-二羟基苯胺(L -DOPA)的小生物分子已用于治疗PD症状
另一方面,某些微生物可以对宿主产生有益的影响。这些微生物称为共生或互助微生物。共生微生物对宿主没有有害作用,而相互主义的微生物为宿主带来了好处。例如,一些肠道细菌有助于分解食物并提取营养,而另一些肠道细菌产生了可用作能源的短链脂肪酸。微型生物群落在宿主微生物相互作用中起着至关重要的作用。微型生物群落的组成可能会受到各种因素的影响,包括饮食,遗传学和环境暴露。微型生物群落的变化可能会对宿主的健康产生重大影响。例如,肠道微生物群落的改变与各种疾病有关,包括炎症性肠病,糖尿病和肥胖症(Wen L等,2018)(Mao A,2020年)。