为了在可接受的仿真时间内获得准确的寿命评估结果,以满足全生命周期设计标准,本文提出了一种基于循环神经网络 (RNN) 的模型来替代 Simulink 模型。首先建立永磁同步发电机 (PMSG) 的平均开关 (AS) 模型和平均基波 (AF) 模型来计算累积损伤。然后,在相同的任务概况下,计算并比较 AS 和 AF 模型的结温、雨流计数和累积损伤。可以看出,AS 模型可以更准确地计算组件的可靠性,因为该模型既考虑了负载变化引起的大热循环,也考虑了基波交流电流引起的小热循环。然而,与 AF 模型相比,它耗费更多时间。为此,提出使用 RNN 模型来替代系统可靠性评估程序中最耗时的部分。借助所提出的模型,与 Simulink 模型相比,可以大大减少所耗时间。最后,通过一个1小时的案例验证了RNN模型的有效性。测试用例的平均绝对百分比误差(MAPE)为0.51%,RNN模型得出结果的时间小于1秒。此外,还实施了一个年度案例来验证RNN模型,全年平均MAPE为0.78%。
摘要:本文介绍了一种开发独立于工具的高保真基于光线追踪的光检测和测距 (LiDAR) 模型的过程。该虚拟 LiDAR 传感器包括扫描模式的精确建模和 LiDAR 传感器的完整信号处理工具链。它是使用标准化开放仿真接口 (OSI) 3.0.2 和功能模型接口 (FMI) 2.0 开发为功能模型单元 (FMU)。随后,它被集成到两个商业软件虚拟环境框架中以证明其可交换性。此外,通过在时间域和点云级别比较模拟和实际测量数据来验证 LiDAR 传感器模型的准确性。验证结果表明,模拟和测量的时间域信号幅度的平均绝对百分比误差 (MAPE) 为 1.7%。此外,从虚拟目标和真实目标接收的点数 N points 和平均强度 I mean 的 MAPE 分别为 8.5% 和 9.3%。据作者所知,这是迄今为止报告的接收点数 N points 和平均强度 I mean 的最小误差。此外,距离误差 d error 低于实际 LiDAR 传感器的测距精度,对于此用例为 2 cm。此外,将试验场测量结果与商业软件提供的最先进的 LiDAR 模型和提出的 LiDAR 模型进行了比较,以测量
摘要:考虑到精确的农业,最新的技术发展引发了几种新工具的出现,这些工具可以帮助自动化农业过程。例如,在果园中准确检测和计数苹果对于最大程度地提高收获和确保有效的资源管理至关重要。但是,传统的技术在果园中识别和计算苹果存在一些内在困难。为了识别,识别和检测苹果,Apple目标检测算法(例如Yolov7)表现出很大的反射和准确性。但遮挡,电线,分支和重叠构成严重的问题,以精确检测苹果。因此,为了克服这些问题并准确识别苹果并在复杂的背景下从基于无人机的视频中找到苹果的深度,我们提出的模型将多头注意系统与Yolov7对象识别框架结合在一起。此外,我们还提供了实时计数的字节式方法,这可以保证对苹果的有效监控。为了验证我们建议的模型的功效,对当前的几种Apple检测和计数技术进行了彻底的比较评估。结果充分证明了我们的策略的有效性,该方法不断超过竞争方法,以相对于精度,回忆和F1分别获得0.92、0.96和0.95的非凡精确度,而低MAPE的低MAPE为0.027。
摘要:进行实验,以获取有关模板打印转移效率的数据,并培训了基于机器学习的技术(人工神经网络)来预测该参数。实验中的输入参数空间包括五个不同级别的打印速度(在20至1120 mm/s之间)以及从0.34到1.69的模板孔的面积比。还研究了三种类型的无铅焊料糊,如下:3型(粒径范围为20-45 µm),4型4(20–38 µm),型5(10-25 µm)。输出参数空间包括打印沉积物的高度和面积以及相应的转移效率,这是沉积物粘贴体积与光圈体积的比率。最后,使用Levenberg -Marquardt培训算法对人工神经网络进行了经验数据。发现网络大小微调的最佳调整因子约为9,导致隐藏的神经元数为160。训练有素的网络能够以平均平均百分比误差(MAPE)低于3%的平均百分比误差(MAPE)来预测输出参数。但是,预测错误取决于输入参数的值,该值在本文中详细列出了。研究证明了机器学习技术在模具印刷过程的产量预测中的适用性。
物理信息深度学习 (PIDL) 是增材制造 (AM) 领域的新兴主题之一。然而,以前的 PIDL 方法的成功通常在很大程度上取决于海量数据集的存在。由于 AM 中的数据收集通常具有挑战性,本研究提出了一种基于有限数据场景的深度展开方法的新型架构驱动 PIDL 结构 APIDL,用于预测激光粉末床熔合过程中的热历史。该机器学习架构中的连接受到迭代热模型方程的启发。换句话说,热模型的每次迭代都映射到神经网络的一层。对 APIDL 模型的超参数进行了调整,并分析了其性能。对于 1000 个点、分割率为 80:20 的 APIDL,测试平均绝对百分比误差 (MAPE) 为 2.8%,R2 值为 0.936。将 APIDL 与人工神经网络、额外树回归器 (ETR)、支持向量回归器和长短期记忆算法进行了比较。结果表明,所提出的 APIDL 模型优于其他模型。APIDL 的 MAPE 和 R 2 比 ETR 低 55.7%,高 15.6%,而 ETR 在其他纯机器学习模型中表现最佳。[DOI:10.1115/1.4062237]
这项研究重点介绍了perlis的每月温度和降雨模式的预测,目的是为该地区的气候提供宝贵的见解。采用了各种预测方法,包括简单的季节性指数平滑(SSE),Holt Winter添加剂,Holt Winter乘法和季节性Arima。使用键误差指标(例如平均绝对误差(MAE),均方根误差(RMSE)和平均绝对百分比误差(MAPE))评估这些模型的准确性。分析结果表明,简单的季节性指数平滑(SSES)模型始终优于其他方法,显示了温度和降雨预测的最低误差指标。具体而言,对于每月温度,MAE的最低误差指标值为0.401,RMSE为0.465,MAPE为1.434。每月降雨,SSES模型表明,1.528的MAE,1.952的RMSE和157.477的MAPE,表明其在捕获Chuping气候中捕获季节性模式方面的准确性很高。该研究的结论表明,在接下来的31个月内,预期的温度和降雨模式稳定,直到2025年底。预测中的这种可靠性为包括农业和环境管理在内的各个部门提供了有价值的信息,这些信息依赖于准确的气候预测进行计划和资源分配。关键字:预测,简单的季节性指数平滑(SSES),Holt-Winter添加剂,Holt Winter乘法性,季节性Arima。[1]。引言Chuping,马来西亚佩里斯(Perlis),以其广泛的农业行业而闻名,其中包括几种不同的农产品,例如大米和橡胶。此外,它具有成为该国最大的甘蔗生产区(Perlis州政府,北卡罗来纳州)的区别。这些农业活动的成功和生产力显着影响当地经济,产生就业机会,刺激农村发展,并支持该地区许多人的生计以及农业部门的谋生,在削弱佩里斯的整体经济增长方面。这些农业活动中这些农业活动的繁荣和生产力与天气条件(主要是降雨和温度)密切相关。
摘要 - 频率覆盖范围图(RF地图)在无线通信方面是有效的,但是通过现场调查获得它们可能是劳动密集型,有时是不切实际的。为了应对这一挑战,我们提出了Recugan,这是一种基于生成的对抗网络(GAN)生成RF地图的方法。recugan利用信息最大化gan(Infogan)的原理来捕获RF地图的潜在特性,从而实现了无监督的分类和新的和多样的RF地图的生成。与传统方法不同,recugan不需要标记的数据或条件输入,降低复杂性,时间和成本。我们使用基于定制的梯度惩罚剂量(WGAN)功能和基于梯度的损耗功能来增强Recugan目标函数,以稳定训练和准确的地图生成。我们还提供了将多个发电机纳入recugan中的选项,从而使高分辨率的RF地图生成。通过通过实验和仿真数据进行广泛的培训证明,Recugan可以合成各种高质量的RF图,并根据RSS分布对它们进行分类。与基于UNET的有条件GAN(CGAN)相比,Recugan的平均平均百分比误差(MAPE)为1.18%,表现优于CGAN模型,CGAN模型的MAPE为2.5%。索引术语 - 生成对抗网络,RF映射,深神经网络,覆盖范围,AI。
摘要 —本文提出了一种创新的室内家居产品数字化设计方法,将虚拟现实(VR)技术与智能算法相结合,以提高设计精度和效率。提出了一种结合红鹿优化算法和简单循环单元(SRU)网络的模型来评估和优化设计过程。本研究开发了一个包含关键评估因素的数字设计框架,通过红鹿优化算法优化SRU网络,以在设计应用中实现更高的精度。通过大量实验,使用平均绝对误差(MAE)、均方根误差(RMSE)和平均绝对百分比误差(MAPE)等指标验证了模型的性能。结果表明,RDA-SRU模型优于其他方法,最小MAE为0.133,RMSE为0.02,MAPE为0.015。此外,该模型的 R² 值达到 0.968,最短评估时间为 0.028 秒,展示了其在预测和评估家居产品数字设计应用方面的卓越性能。这些发现表明,VR 与智能算法的结合显著提高了用户体验、可定制性和数字设计流程的整体准确性。这种方法为设计师提供了一个强大的解决方案,可以创建更高效、以用户为中心的家居产品设计,满足客户对沉浸式和交互式设计体验日益增长的需求。
摘要 - 驾驶员的嗜睡状态是广泛讨论的话题,因为它在造成交通事故中的重要作用。本研究提出了一种新的方法,该方法结合了模糊的常见空间模式(CSP)优化的相位内聚序列(PC)表示和模糊CSP优化的信号振幅表示。该研究旨在检查机敏状态和嗜睡状态之间脑电图(EEG)同步的变化,通过分析脑电图数据,预测驱动因素的反应时间,并随后确定嗜睡的存在。该研究的发现表明,这种方法成功地区分了警报和昏昏欲睡的精神状态。通过使用基于自动编码器的深度编码器数据融合技术和回归模型,例如支持向量回归(SVR)或最少的绝对收缩和选择运算符(LASSO),该提出的方法使用与回归器模型组合的单个特征集优于单个特征集。通过评估均方根误差(RMSE),平均绝对百分比误差(MAPE)和相关系数(CC)来衡量这种优势。换句话说,基于自动编码器的振幅EEG功率功能和PCS功能的融合在回归中,单独在回归器模型中使用这些功能中的任何一个。具体而言,与仅使用单个振幅EEG功率功能和回归相比,与基线模型相比,提议的数据融合方法的RMSE降低了14.36%,MAPE降低25.12%,CC降低了10.12%。
摘要 - 移动电话的价格是市场上移动产品成功的最重要因素之一。根据其功能预测手机价格的回归方法可以帮助公司确定新手机的价格。这项研究研究了可显着预测价格并开发模型以使用两种方法预测价格的变量,即线性回归和随机森林方法。该实验使用的数据从Kaggle下载,其中包含145个手机价格和功能。发现,线性回归和随机森林算法可以提供相对良好的手机预测,其MAPE评分低于10%和R2得分以上95%以上。随机森林方法预测价格略好于线性回归。