COVID-19 是一种传染病,已感染全球超过 5 亿人。由于病毒的迅速传播,各国面临着应对感染增长的挑战。特别是,医疗保健组织在有效配置医务人员、设备、病床和隔离中心方面面临困难。机器和深度学习模型已用于预测感染,但模型的选择对于数据分析师来说具有挑战性。本文提出了一种自动化的人工智能主动准备实时系统,该系统根据感染演变的时间分布选择学习模型。所提出的系统集成了一种确定合适学习模型的新方法,无需人工干预即可产生准确的预测算法。对我们提出的方法和最先进的方法进行了数值实验和比较分析。结果表明,与最先进的方法相比,所提出的系统预测感染的平均绝对百分比误差 (MAPE) 平均降低了 72.1%,均方根误差 (RMSE) 平均降低了 65.2%。
摘要: - 准确的SOH估计是追求锂离子电池安全使用的关键目标。本文基于SOH预测的容量估计方法,使用了一种新颖的进料前进神经网络方法。此外,使用MATLAB®2023软件创建了使用的算法,并提出了一种馈送前向前的神经网络方法来预测电池老化过程。本文采用了来自NASA PCOE研究中心的实验数据来确定和比较电池充电和放电周期期间的实际健康状况(SOHS)和预测的健康状况(SOHS)。算法的有效性是通过比较机器学习方法的细胞降解的影响确定的,并通过模拟和比较训练,验证和测试曲线的结果,测试了算法。最后,平均绝对百分比误差(MAPE)和根平方百分比误差(RMSPE)误差表明,本文中进行的模拟正确表示电池的退化状态,并确认了提出的馈送前向神经网络的结果和有效性。
摘要在数据驱动决策至关重要的时代,本文探讨了先进的统计方法和机器学习的使用来预测特定大陆欧洲特定大陆的业务动态。在引言中讨论了预测经济学的重要性,随后对相关文献进行了回顾,该文献强调了最近的工作和预测。这项工作已利用苏格兰和威尔士的开放政府数据(OGD)为2010年至2023年,该研究还采用人工神经网络(ANN)进行回归分析来预测企业的增长。详细的关注是针对ANN的参数,用于确保方法论透明度。使用平均绝对年龄误差(MAPE)和确定系数(𝑅2)评估模型的有效性,分别为0.8%和0.97。后来,通过各种技术在视觉上表示结果,目的是将预测结果与实际数据进行比较。本文结束了概述该研究的重要贡献,它还强调了ANN在经济预测中的能力增强及其对决策的潜在影响。
锂离子 (Li-ion) 电池是现代电力系统不可或缺的部件,但其性能会随着时间的推移而下降。准确预测这些电池的剩余使用寿命 (RUL) 对确保电网的可靠高效运行至关重要。在此基础上,本文提出了一种新的 Coati 集成卷积神经网络 (CNN)-XGBoost 方法,用于锂离子电池的早期 RUL 预测。该方法采用 CNN 架构,通过图像处理技术自动从电池放电容量数据中提取特征。从 CNN 模型中提取的特征与基于电池充电策略信息从前 100 个电池测量循环数据中提取的另一组特征相连接。然后将这组组合的特征输入 XGBoost 模型进行早期 RUL 预测。此外,Coati 优化方法 (COM) 用于 CNN 超参数调整,以提高所提出的 RUL 预测方法的性能。数值结果揭示了所提出方法在预测锂离子电池 RUL 方面的有效性,其中 RMSE 和 MAPE 分别获得了 106 次循环和 7.5% 的值。
摘要 定向能量沉积 (DED) 工艺是一种代表性的金属增材制造技术,它使用柔性沉积头,主要用于航天和海洋工业的维修。DED 工艺节省时间和金钱,因为它只修复受损的零件和部件。因此,几何控制对于经济准确地填充目标受损区域的体积非常重要。然而,效率取决于激光功率、扫描速度等工艺参数。本研究提出了一种一维卷积神经网络 (1D-CNN) 模型,利用熔池图像数据预测 DED 部件的高度轮廓。首先,对总共 9 种情况进行了 DED 实验,考虑了激光功率和扫描速度作为参数。对收集到的熔池图像数据进行预处理,只提取与感兴趣区域相关的数据。最初,从熔池图像中提取了大小、形状、位置和亮度等共 15 个特征。然后,通过置换特征重要性评估方法选择 10 个关键特征,将其输入到 1D-CNN 算法中,以预测沉积层的高度轮廓。在测试阶段,平均绝对百分比误差(MAPE)为9.55%,验证了所提模型的适用性。
Ing. Samuel Bonanno 于 2011 年毕业于马耳他大学电气工程专业,主修电力,随后在马耳他大学继续攻读电气工程硕士学位,并于 2017 年再次毕业。Ing. Bonanno 在行业中担任过各种工程职务,在可再生能源系统、电气安装和制造方面拥有丰富的经验。他目前担任 Mater Dei 医院的电气工程师,负责医院内的电力分配网络和其他电力系统。Ing. Bonanno 在过去两届任期内一直是工程专业委员会的当选成员,他通过各种举措积极促进和维护该专业的利益。Ing. Bonanno 是马耳他专业工程师协会的创始成员,并被重新任命为下一届 MAPE 副主席。Ing. Bonanno 的专业兴趣包括电力系统、可再生能源系统、工程专业内的法律问题以及工程管理。Ing.博南诺正在为即将举行的选举提交提名,其唯一目的是继续维护该职业并进一步为该职业的进步和发展及其在马耳他社会的认可做出贡献。
本研究探讨了使用自动MPG数据集预测各种机器学习模型的应用。它检查了算法的有效性,例如决策树回归器,随机森林,支持向量回归体以及基于神经网络的模型,例如LSTM和GRU。该研究旨在通过分析发动机规格,驾驶习惯和车辆设计等因素来提高燃油效率预测。使用诸如R平方(R2),均方根误差(RMSE),平均绝对误差(MAE)和平均绝对百分比误差(MAPE)等指标评估模型的性能,以确保准确性并最小化误差。关键字:MPG,回归,机器学习©2023 AI Ntelia 1。引言在环境可持续性与技术创新相遇的时代,汽车行业处于相当大变化的最前沿[1,2]。随着气候变化的加剧影响以及全球对能源效率的不断增长的需求,精确预测车辆燃料使用的能力不仅成为一个关键挑战,而且还成为巨大的潜力。输入机器学习的世界,这是一种动态而强大的工具,正在改变我们对汽车燃料效率的看法[3,4]。
通过准确的测量和管理消费者价格指数(CPI)来确保价格稳定,从而促进了有利于可持续增长,投资和就业的稳定经济环境。作为关键的经济指标,CPI对通货膨胀,购买力和生活成本进行了全面评估,这是政策制定者,企业和消费者的重要工具。在马来西亚,CPI稳步增加,反映了稳定的通货膨胀率。 认识到需要低和稳定的通货膨胀的需求,政府优先考虑这一目标,以增强经济繁荣和社会福祉。 准确的CPI预测对于经济稳定和明智的财务决策至关重要。 机器学习(ML)模型表现出了提高CPI预测准确性比传统方法的重要潜力。 但是,在马来西亚专门针对CPI和通货膨胀率预测的研究仍然有限。 这项研究评估了五种ML技术的性能:自回旋的集成运动平均值(ARIMA),几何布朗运动(GBM),门控复发单元(GRU),长期短期记忆(LSTM)和自适应的神经神经模糊的推理系统(ANFIS),以预测马来西亚CPI的CPI。 模型是通过将其预测与2022年10月至2023年9月的实际CPI数据进行比较来评估的。 结果表明,GRU模型表现最好,表现出最低的RMSE,MSE和MAPE得分,从而突出了通货膨胀的一致上升趋势。 这项研究鼓励使用先进的ML模型或混合方法进一步探索马来西亚通货膨胀,以提高预测准确性。在马来西亚,CPI稳步增加,反映了稳定的通货膨胀率。认识到需要低和稳定的通货膨胀的需求,政府优先考虑这一目标,以增强经济繁荣和社会福祉。准确的CPI预测对于经济稳定和明智的财务决策至关重要。机器学习(ML)模型表现出了提高CPI预测准确性比传统方法的重要潜力。但是,在马来西亚专门针对CPI和通货膨胀率预测的研究仍然有限。这项研究评估了五种ML技术的性能:自回旋的集成运动平均值(ARIMA),几何布朗运动(GBM),门控复发单元(GRU),长期短期记忆(LSTM)和自适应的神经神经模糊的推理系统(ANFIS),以预测马来西亚CPI的CPI。模型是通过将其预测与2022年10月至2023年9月的实际CPI数据进行比较来评估的。结果表明,GRU模型表现最好,表现出最低的RMSE,MSE和MAPE得分,从而突出了通货膨胀的一致上升趋势。这项研究鼓励使用先进的ML模型或混合方法进一步探索马来西亚通货膨胀,以提高预测准确性。
摘要。预测拉伸强度的预测是确定结构性能的关键机械属性,是评估可回收骨料的可行性的组成部分。评估回收骨料的分裂拉伸强度的传统技术依赖于高级和耗时的实验室测试,这对于大规模应用可能是昂贵且效率低下的。这项工作提出了基于机器学习的算法,以预测分裂拉伸强度的性能。在这项研究中,从先前的研究中获得了257项测量,其中包含影响分裂强度的输入变量。使用三种方法来构建不同的预测模型,即支持向量回归,XG增强和随机森林。使用MAE,RMSE,MAPE和MASE等指标评估了各种模型的性能指数,以测量模型的准确性和可靠性。本研究表明,随机森林算法的表现优于其他RMSE值1.76的模型。实施拟议的模型可提高预测的可靠性,使研究人员能够做出有关将再生材料纳入可持续建筑实践中的明智决定,从而有助于减少建筑部门的环境影响。关键字:回收总骨料混凝土(RAC),机器学习,随机森林,XG提升,拉伸强度,支持向量回归
摘要。材料的腐蚀在各个行业构成了重大挑战,从而产生了重大的经济影响。在这种情况下,嘧啶化合物出现是有希望的,无毒的,具有成本效益和多功能腐蚀抑制剂的。然而,识别这种抑制剂的常规方法通常是时必时间的,昂贵的且劳动力密集的。应对这一挑战,我们的研究利用机器学习(ML)预测嘧啶化合物化合物腐蚀抑制效率(CIE)。使用定量结构 - 特性关系(QSPR)模型,我们比较了14个线性和12种非线性ML算法来识别CIE的最准确预测指标。装袋回归模型表现出卓越的性能,达到均方根误差(RMSE)为5.38,均方根误差(MSE)为28.93,平均绝对误差(MAE)为4.23,平均绝对百分比误差(MAPE)为0.05,以预测吡啶胺化合物的CIE值。这项研究标志着腐蚀科学的显着进步,提供了一种新型,有效的基于ML的方法,可替代传统的实验方法。它表明机器学习可以快速,准确地确定有机化学抑制剂(如嘧啶止材料腐蚀)的良好状态。这种方法为行业提供了一种新的观点和可行的解决方案,以解决已经存在的问题。
