fi g u r e 2 1,25(OH)2 D 3抑制成纤维细胞中衰老相关的介体和阻滞p38 MAPK。非元素和衰老成纤维细胞用10 nm 1,25(OH)2 d 3进行7天处理。(a)使用细胞仪珠阵列(n = 7)进行CCL2,IL-6和IL-8的定量。7天后计数非元素和衰老细胞的细胞数量,并根据其非年代对照组的细胞数成比例地调节衰老细胞上清液中的细胞数和浓度。(b)使用Western blot(c)(c)累积数据(n = 9)的Phosho-P38 MAPK(P-P38),总P38 MAPK和GAPDH的代表性印迹。数据表示为平均值±SEM,并使用单向方差分析和Dunn的多重比较测试进行比较。*p≤0.05; **p≤0.01; ***p≤0.001。
©作者2024。Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/4.0/。Creative Commons公共领域奉献豁免(http://creativecom- mons.org/publicdomain/zero/zero/1.0/)适用于本文中提供的数据,除非在数据信用额度中另有说明。
MAPK途径是重要的细胞信号级联,其功能障碍会导致多种疾病。虽然该级联反应的上游调节剂已得到广泛的特征,但对其激活方式转化为不同的转录响应的理解仍然很众所周知。这项研究试图通过使用靶向的wisturb-seq来填补这一知识空白,以针对Raf-Mapk信号的诱导模型系统中的22个转录因子。基于拓扑的建模方法应用于获得的数据以构建方向交互网络。通过删除连贯的前馈回路并整合了转录因子的表达动力学,得出了一个简约的网络结构,该结构将直接与研究的转录因子及其靶标之间的间接相互作用区分开来。特别是,发现EGR1和FOS充当RAF-MAPK响应的正交上游调节剂。此处提供的结果为RAF-MAPK信号下游的转录网络的组织提供了宝贵的见解,从而为更好地理解这一复杂过程提供了基础。
背景:铁铁作用是一种不同的铁细胞死亡形式,是由于活性氧(ROS)的产生引起的严重脂质过氧化引起的。乳腺癌患者的生存与Rho鸟苷三磷酸酶水解酶(GTPase)活化蛋白6(ARHGAP6)的肿瘤抑制特性相关。这项研究研究了ARHGAP6对乳腺癌螺栓吞噬作用的影响和机制。方法:使用定量RT-PCR,Western印迹和免疫荧光染色,在基因表达数据集,癌组织样品和细胞中检测到ARHGAP6表达。ARHGAP6。使用5-乙基-2-脱氧尿苷(EDU)测定法测量细胞增殖,并使用LDH细胞毒性测定法测定细胞死亡率。As indicators of ferroptosis, Fe 2+ ion content, lipid ROS, glutathione peroxidase 4 (GPX4), ChaC glutathione specific gamma-glutamylcyclotransferase 1 (CHAC1), prostaglandin-endoperoxide synthase 2 (PTGS2), solute car- rier family 7 member 11 (SLC7A11), and评估了酰基-COA合成酶长链家族成员4(ACSL4)水平。结果:在癌症组织和细胞中,ARHGAP6显然被下调。ARHGAP6的过表达降低了细胞增殖,细胞死亡升高和脂质ROS,降低了GPX4和SLC7A11,PTGS2,ACSL4和CHAC1增加,并抑制了癌细胞中的RhoA/Rock1和P38 MAPK信号。ARHGAP6敲低与ARHGAP6过表达相反的影响。ARHGAP6 mRNA水平与肿瘤组织中的铁凋亡指标呈正相关。p38 signaling抑制逆转了arhgap6敲低对逆转录病的影响,而rhoa/rock1信号抑制作用损害了arhgap6对p38 mapk信号传导的影响。在小鼠模型中,ARHGAP6以及诱导肌毒死剂RSL3合作的促进性铁氧作用增强并抑制了癌细胞的肿瘤生长。结论:这项研究表明,ARHGAP6通过通过RhoA/Rock1/p38 MAPK信号传递肿瘤来抑制乳腺癌的肿瘤生长。将ARHGAP6与诱导脂肪毒剂诱导剂相结合可能是乳腺癌治疗的有前途的治疗策略。
摘要:有丝分裂原激活的蛋白激酶(MAPK)途径对于细胞增殖,生长和存活至关重要。通过BRAF突变对该途径的本构激活会导致激酶的下游激活,从而导致不受控制的细胞生长和癌变。因此,抑制BRAF和下游底物MEK已被证明可有效控制肿瘤的生长和增殖。在过去的十年中,已经研究了几种BRAF和MEK抑制剂,从主要是黑色素瘤到具有BRAF促成的各种癌症。随后,这导致了BRAF/MEK抑制剂的多个食品和药物管理(FDA)批准,用于黑色素瘤,非小细胞肺癌,肿瘤性甲状腺癌,结肠癌,组织细胞增多症,肿瘤性肿瘤,最后是Tumor-agnosticatic指示。在这里,这项全面的审查将涵盖BRAF和MEK抑制剂从黑色素瘤到肿瘤反应的适应症,新颖的药物,挑战,未来方向以及这些药物在个人医学中的重要性。
Asai T,Tena G,Plotnikova J,Willmann MR,Chiu W-L,Gomez-Gomez L,Boller T,Ausubel FM,Sheen J。拟南芥先天免疫中的激酶信号传导级联。自然。2002:415(6875):977–983。 https://doi.org/10.1038/415977a bi G,Zhou Z,Wang W,Li L,Rao S,Wu Y,Zhang X,Menke flh,Chen S,Zhou J-M。 受体样细胞质激酶直接将各种模式识别受体与拟南芥中有丝分裂原激活的蛋白激酶级联反应的激活联系起来。 植物细胞。 2018:30(7):1543–1561。 https://doi.org/10.1105/tpc.17.00981 Frye CA,Tang D,Innes RW。 通过保守的MAPKK激酶对植物中防御反应的负调节。 Proc Natl Acad Sci U S A. 2001:98(1):373–378。 https://doi.org/10.1073/pnas.98.1.373 Gao C,Sun P,Wang W,Tang d。 拟南芥E3连接酶桶与MKK4和MKK5的相关性,以调节植物免疫。 J Integn Plant Biol。 2021:63(2):327–339。 https://doi.org/10.1111/jipb。 13007 Tang D,Innes RW。 EDR1基因的激酶缺陷形式的过表达增强了拟南芥中的白粉病抗霉菌和乙烯诱导的衰老。 植物J. 2002:32(6):975–983。 https://doi.org/10.1046/j.1365-313x.2002.01482.x Wang W,Chen S,Zhong G,Gao C,Gao C,Zhang Q,Tang d。 有丝分裂原激活的蛋白激酶3通过磷酸化MAPKKK5增强了EDR1突变体的抗病。 植物生理学。 2024:194(1):578–591。 https://doi.org/10.1093/plphys/kiad472 Yan H,Zhao Y,Shi H,Li J,Wang Y,Tang d。2002:415(6875):977–983。https://doi.org/10.1038/415977a bi G,Zhou Z,Wang W,Li L,Rao S,Wu Y,Zhang X,Menke flh,Chen S,Zhou J-M。受体样细胞质激酶直接将各种模式识别受体与拟南芥中有丝分裂原激活的蛋白激酶级联反应的激活联系起来。植物细胞。2018:30(7):1543–1561。https://doi.org/10.1105/tpc.17.00981 Frye CA,Tang D,Innes RW。 通过保守的MAPKK激酶对植物中防御反应的负调节。 Proc Natl Acad Sci U S A. 2001:98(1):373–378。 https://doi.org/10.1073/pnas.98.1.373 Gao C,Sun P,Wang W,Tang d。 拟南芥E3连接酶桶与MKK4和MKK5的相关性,以调节植物免疫。 J Integn Plant Biol。 2021:63(2):327–339。 https://doi.org/10.1111/jipb。 13007 Tang D,Innes RW。 EDR1基因的激酶缺陷形式的过表达增强了拟南芥中的白粉病抗霉菌和乙烯诱导的衰老。 植物J. 2002:32(6):975–983。 https://doi.org/10.1046/j.1365-313x.2002.01482.x Wang W,Chen S,Zhong G,Gao C,Gao C,Zhang Q,Tang d。 有丝分裂原激活的蛋白激酶3通过磷酸化MAPKKK5增强了EDR1突变体的抗病。 植物生理学。 2024:194(1):578–591。 https://doi.org/10.1093/plphys/kiad472 Yan H,Zhao Y,Shi H,Li J,Wang Y,Tang d。https://doi.org/10.1105/tpc.17.00981 Frye CA,Tang D,Innes RW。通过保守的MAPKK激酶对植物中防御反应的负调节。Proc Natl Acad Sci U S A.2001:98(1):373–378。 https://doi.org/10.1073/pnas.98.1.373 Gao C,Sun P,Wang W,Tang d。 拟南芥E3连接酶桶与MKK4和MKK5的相关性,以调节植物免疫。 J Integn Plant Biol。 2021:63(2):327–339。 https://doi.org/10.1111/jipb。 13007 Tang D,Innes RW。 EDR1基因的激酶缺陷形式的过表达增强了拟南芥中的白粉病抗霉菌和乙烯诱导的衰老。 植物J. 2002:32(6):975–983。 https://doi.org/10.1046/j.1365-313x.2002.01482.x Wang W,Chen S,Zhong G,Gao C,Gao C,Zhang Q,Tang d。 有丝分裂原激活的蛋白激酶3通过磷酸化MAPKKK5增强了EDR1突变体的抗病。 植物生理学。 2024:194(1):578–591。 https://doi.org/10.1093/plphys/kiad472 Yan H,Zhao Y,Shi H,Li J,Wang Y,Tang d。2001:98(1):373–378。https://doi.org/10.1073/pnas.98.1.373 Gao C,Sun P,Wang W,Tang d。 拟南芥E3连接酶桶与MKK4和MKK5的相关性,以调节植物免疫。 J Integn Plant Biol。 2021:63(2):327–339。 https://doi.org/10.1111/jipb。 13007 Tang D,Innes RW。 EDR1基因的激酶缺陷形式的过表达增强了拟南芥中的白粉病抗霉菌和乙烯诱导的衰老。 植物J. 2002:32(6):975–983。 https://doi.org/10.1046/j.1365-313x.2002.01482.x Wang W,Chen S,Zhong G,Gao C,Gao C,Zhang Q,Tang d。 有丝分裂原激活的蛋白激酶3通过磷酸化MAPKKK5增强了EDR1突变体的抗病。 植物生理学。 2024:194(1):578–591。 https://doi.org/10.1093/plphys/kiad472 Yan H,Zhao Y,Shi H,Li J,Wang Y,Tang d。https://doi.org/10.1073/pnas.98.1.373 Gao C,Sun P,Wang W,Tang d。拟南芥E3连接酶桶与MKK4和MKK5的相关性,以调节植物免疫。J Integn Plant Biol。2021:63(2):327–339。https://doi.org/10.1111/jipb。 13007 Tang D,Innes RW。 EDR1基因的激酶缺陷形式的过表达增强了拟南芥中的白粉病抗霉菌和乙烯诱导的衰老。 植物J. 2002:32(6):975–983。 https://doi.org/10.1046/j.1365-313x.2002.01482.x Wang W,Chen S,Zhong G,Gao C,Gao C,Zhang Q,Tang d。 有丝分裂原激活的蛋白激酶3通过磷酸化MAPKKK5增强了EDR1突变体的抗病。 植物生理学。 2024:194(1):578–591。 https://doi.org/10.1093/plphys/kiad472 Yan H,Zhao Y,Shi H,Li J,Wang Y,Tang d。https://doi.org/10.1111/jipb。13007 Tang D,Innes RW。EDR1基因的激酶缺陷形式的过表达增强了拟南芥中的白粉病抗霉菌和乙烯诱导的衰老。植物J.2002:32(6):975–983。 https://doi.org/10.1046/j.1365-313x.2002.01482.x Wang W,Chen S,Zhong G,Gao C,Gao C,Zhang Q,Tang d。 有丝分裂原激活的蛋白激酶3通过磷酸化MAPKKK5增强了EDR1突变体的抗病。 植物生理学。 2024:194(1):578–591。 https://doi.org/10.1093/plphys/kiad472 Yan H,Zhao Y,Shi H,Li J,Wang Y,Tang d。2002:32(6):975–983。https://doi.org/10.1046/j.1365-313x.2002.01482.x Wang W,Chen S,Zhong G,Gao C,Gao C,Zhang Q,Tang d。有丝分裂原激活的蛋白激酶3通过磷酸化MAPKKK5增强了EDR1突变体的抗病。植物生理学。2024:194(1):578–591。https://doi.org/10.1093/plphys/kiad472 Yan H,Zhao Y,Shi H,Li J,Wang Y,Tang d。铜制固醇信号激酶1磷酸化mapkkk5以调节拟南芥的免疫力。植物生理学。2018:176(4):2991–3002。 https://doi.org/10.1104/pp.17.01757 Zhao C,Nie H,Shen Q,Zhang S,Lukowitz W,Tang d。 EDR1与MKK4/MKK5物理相互作用,并负调节MAP激酶级联反应以调节植物先天免疫。 PLOS基因。 2014:10(5):E1004389。 https://doi.org/10.1371/journal.pgen.10043892018:176(4):2991–3002。https://doi.org/10.1104/pp.17.01757 Zhao C,Nie H,Shen Q,Zhang S,Lukowitz W,Tang d。EDR1与MKK4/MKK5物理相互作用,并负调节MAP激酶级联反应以调节植物先天免疫。PLOS基因。2014:10(5):E1004389。 https://doi.org/10.1371/journal.pgen.10043892014:10(5):E1004389。https://doi.org/10.1371/journal.pgen.1004389
。CC-BY-NC-ND 4.0 国际许可证永久有效。它是在预印本(未经同行评审认证)下提供的,作者/资助者已授予 bioRxiv 许可,可以在该版本中显示预印本。版权持有者于 2023 年 11 月 5 日发布了此版本。;https://doi.org/10.1101/2023.03.30.534915 doi:bioRxiv 预印本
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本发布于2023年10月4日。 https://doi.org/10.1101/2023.05.26.542451 doi:Biorxiv Preprint
一个潜在的群体。欧洲呼吸杂志. 2021:2101017。先在网上,后印刷。 3.Badalian-Very G、Vergilio JA、Degar BA、MacConaill LE、Brandner B、Calicchio ML 等人。朗格汉斯细胞组织细胞增生症中的复发性 BRAF 突变。血。 2010;116:1919-23。 4. Davies H、Bignell GR、Cox C、Stephens P、Edkins S、Clegg S 等人。 BRAF 突变
摘要:细胞外信号调节的激酶5(ERK5)是促分裂原激活蛋白激酶(MAPK)家族的成员,参与关键细胞过程。然而,已经报道了各种癌症的ERK5的过表达和上调,ERK5几乎与癌细胞的几乎所有生物学特征有关。因此,ERK5已成为开发抗癌药物的新型靶标,因为抑制ERK5显示出癌细胞有害特性的抑制作用。在此,我们报告了一种新型ERK5抑制剂MHJ-627的合成和鉴定,并在酵母模型和宫颈癌HELA细胞系中验证其有效的抗癌效率。MHJ-627成功抑制了ERK5的激酶活性(IC 50:0.91 µm),并促进了肿瘤抑制因子和抗转移基因的mRNA表达。此外,在MHJ-627治疗引起的ERK5抑制后,我们观察到明显的癌细胞死亡,并伴随着细胞增殖标记物的mRNA水平降低,增殖细胞核抗原(PCNA)。我们预计这将成为铅化合物,以进一步鉴定ERK5定向的新方法进行抑制剂,以增加特异性疗法。