定量测量微电子设备中电场的定量测量由位于原位的STEM Victor Boureeau 1,Lucas Bruas 2,Matthew Bryan 2,Matthew Bryan 2,Jean-LucRouvière3和David David Cooper 2** 1* 1。电子显微镜跨学科中心,EPFL,洛桑,瑞士。2。大学。Grenoble Alpes,CEA,Leti,Grenoble,法国。3。大学。Grenoble Alpes,CEA,Irig-Mem,Grenoble,法国。*通讯作者:David.cooper@cea.fr纳米尺度上字段的定量映射对于了解设备的行为并提高其性能至关重要。从历史上看,这是通过过轴电子全息图执行的,因为该技术已经成熟并提供了可靠的定量测量[1]。近年来,硬件的改进使扫描传输电子显微镜(STEM)实验期间的衍射模式的记录成为可能,从而生成所谓的4D-STEM数据集。越来越多的数据处理方法与特定的采集设置相结合,导致了广泛的像素化词干技术[2]。在这里,我们探讨了以像素化的茎构型进行的差异相位对比度(DPC)技术[3] [4]。它允许根据衍射平面中发射光束的强度位移对电场进行定量测量。我们将展示如何受显微镜和数据处理的配置影响类似DPC的像素化的茎测量值。结果将与电子全息图和仿真进行比较。样品在图1和图2中显示。1(c)。开始,我们将在掺杂的硅P -N结上进行工作,并以对称1 E 19 cm -3的浓度掺杂,在-1.3 V的反向偏置下进行检查。使用此样品,平均内部电位(组合电位)没有变化,偏置电压会增加内置电场。通过聚焦的离子束制备了连接的横截面,并在FEI Titan显微镜中使用Protochips Aduro 500样品支架附着在芯片上进行原位偏置实验,该实验在200 kV下运行。1(a,b),晶体厚度为390 nm,如收敛束电子衍射测量。使用二级离子质谱掺杂剂测量作为输入,用Silvaco软件对结中的电场进行建模。整个连接处的轮廓如图通过离轴电子全息图测量了偏置连接的电场,请参见图。1(c,d),并在除去非活动厚度后与建模很好地一致[1]。反向偏见的P-N连接的电场的大小约为0.65 mV.cm -1,耗尽宽度约为60 nm。已经研究了不同的像素化的茎构和处理方法,以测量连接处的电场。当探针大小大于特征场变化长度时,导致射击梁内部强度重新分布时,使用了一种算法(COM)算法。当传输梁小于场变化并经历刚性变速时,使用模板匹配(TM)算法[5]。2(a)。电场图如图首先,使用低磁化(LM)茎构型,使用的一半收敛角为270 µRAD,相机长度为18 m。连接处的衍射图显示了传输梁边缘处强度的重新分布,因此使用COM加工,请参见图。2(e)和图中绘制了一个轮廓。2(i)。连接点的耗尽宽度似乎约为100 nm,这表明由于LM茎配置的探针大小较大,
海军使用大量的氢氟化合物(HFC)作为空调(AC)植物中的制冷剂。这些植物的冷却能力从125到1100制冷吨(RTON),并为各种任务关键冷却应用提供冷藏水,包括重要的电子,武器系统和人员。使用这些相同的HFCS制冷剂的泵送两相冷却系统直接冷却了许多未来的高能电子系统。最近的立法以及国际协议可能会影响这些HFC的未来可用性和成本。尤其是,《美国创新与制造法》(AIM)法案(公共法116-260)要求在未来15年内减少氢氟化合物的85%。本文总结了所采取的挑战,机会和最初的研究工作,以识别适合在海军平台上使用的低GWP替代品。
尼日利亚尤林伊洛林大学工业化学系 *通讯作者。电子邮件:abioye.oluwaseyi@lmu.edu.ng doi:10.14416/j.asep.2024.09.011收到:2024年7月12日;修订:2024年8月18日;接受:2024年9月11日;在线发布:2024年9月24日©2024 King Mongkut的北曼谷大学。 保留所有权利。 抽象的Vermicomposting为堆肥提供了一种绿色替代品,可以减少温室气体的排放并改善土壤健康。 由于现有的废物管理实践,温室气体被释放到环境中。 仍然,通过将有机废物回收为一种改善土壤健康并提高农作物产量的土壤修正案,Vermicostosting为可持续的解决方案提供了可持续的解决方案。 这项研究提供了对ver虫的好处的深入概述,这种做法将有机废料恢复到一种称为vermicompost的养分丰富的土壤修正案中,可以减少温室气体的排放,改善土壤的生育能力,并通过增强作物来增强土壤结构和微生物的作用,从而促进恐惧的范围,从而使危险的变化成为浪费,以使危险的变化成为浪费,以使浪费浪费,以使成型的浪费,并促进变化,并促进变化,并促进变化,并促进浪费,并逐渐塑造,并促进变化,并逐渐塑造浪费,并促进浪费,并逐渐塑造物体,并促进危险的造型,并逐渐造成危险的变化,并将其恢复到危险的范围。保护土壤并促进农业。 此概述研究了有机废物如何降低垃圾填埋场的温室气体排放,通过改善土壤结构和生育能力来提高农作物的产量,并通过增加微生物生物多样性和养分的可用性来丰富土壤。 vermicostosting通过一些富含营养的铸件提供有机废物的降解和排毒。电子邮件:abioye.oluwaseyi@lmu.edu.ng doi:10.14416/j.asep.2024.09.011收到:2024年7月12日;修订:2024年8月18日;接受:2024年9月11日;在线发布:2024年9月24日©2024 King Mongkut的北曼谷大学。保留所有权利。抽象的Vermicomposting为堆肥提供了一种绿色替代品,可以减少温室气体的排放并改善土壤健康。由于现有的废物管理实践,温室气体被释放到环境中。仍然,通过将有机废物回收为一种改善土壤健康并提高农作物产量的土壤修正案,Vermicostosting为可持续的解决方案提供了可持续的解决方案。这项研究提供了对ver虫的好处的深入概述,这种做法将有机废料恢复到一种称为vermicompost的养分丰富的土壤修正案中,可以减少温室气体的排放,改善土壤的生育能力,并通过增强作物来增强土壤结构和微生物的作用,从而促进恐惧的范围,从而使危险的变化成为浪费,以使危险的变化成为浪费,以使浪费浪费,以使成型的浪费,并促进变化,并促进变化,并促进变化,并促进浪费,并逐渐塑造,并促进变化,并逐渐塑造浪费,并促进浪费,并逐渐塑造物体,并促进危险的造型,并逐渐造成危险的变化,并将其恢复到危险的范围。保护土壤并促进农业。此概述研究了有机废物如何降低垃圾填埋场的温室气体排放,通过改善土壤结构和生育能力来提高农作物的产量,并通过增加微生物生物多样性和养分的可用性来丰富土壤。vermicostosting通过一些富含营养的铸件提供有机废物的降解和排毒。这些铸造的潜力改善土壤健康引发了农业研究人员的兴趣。用ver虫肥料受精的作物繁荣发展,产生更高的产量,植物的养分密度显着增加。新兴研究表明,Vermicompost可以与气候变化作斗争。作为一种有机肥料,与常规肥料相比,它增强了植物和土壤隔离碳,降低温室气体的能力,减少温室气体,并减少甲烷和一氧化二氮的排放。随着更广泛的实施,Vermicostosting通过再生农业为应对气候变化的途径提供了有意义的途径。Keywords : Carbon sequestration, Environmental quality, Nutrient retention, Organic waste recycling, Soil management, Sustainable agriculture 1 Introduction Conventional agriculture has caused significant harm to society over the past few decades by overusing land and water resources, causing biodiversity loss, and erosion, and using pesticides in an uncontrolled
6医学系,洛约拉大学医学中心,芝加哥,伊利诺伊州7 7号急诊医学系,威斯康星大学 - 麦迪逊分校,麦迪逊麦迪逊大学威斯康星州麦迪逊市8号湾长8号湾佛罗里mchurpek@medicine.wisc.edu披露:Drs。Churpek和Edelson是获得患者风险评估专利(US11410777)专利的发明者,并从芝加哥大学获得此知识产权的特许权使用费。Edelson博士受雇,并在Agilemd拥有股权,该股份销售和分发Ecart。资金来源:这项工作得到了美国国立卫生研究院(PI:MMC; R01HL157262)和生物医学高级研发局(BARDA)的资金的支持,这是其研究创新创新与Ventures and Ventures and Ventures and Ventures(Drive)的一部分,合同编号为75A5A5A5A5A5A5A5A5A50121C00043(PI:DPE:DPE)。贡献:MMC对手稿的内容承担全部责任。MMC和DPE概念化了这项研究。KAC对数据进行了统计分析。 MMC撰写了手稿的初稿,并修改了后续版本。 所有作者都为数据解释做出了贡献,审查并编辑了初始草稿,并批准了最终手稿。 关键字:预警评分;临床恶化;机器学习;快速响应系统;人工智能单词计数:3,310KAC对数据进行了统计分析。MMC撰写了手稿的初稿,并修改了后续版本。所有作者都为数据解释做出了贡献,审查并编辑了初始草稿,并批准了最终手稿。关键字:预警评分;临床恶化;机器学习;快速响应系统;人工智能单词计数:3,310
1个心理科学学院,澳大利亚墨尔本莫纳什大学医学院,护理与健康科学学院; 2英国牛津大学医学院实验心理学系; 3墨尔本墨尔本大学心理科学学院,澳大利亚墨尔本; 4澳大利亚堪培拉大学卫生学院心理学学科; 5特纳大脑与心理健康研究所,澳大利亚墨尔本莫纳什大学医学院,护理与健康科学学院; 6日本苏亚国家信息与通信技术学院(NICT)信息与神经网络中心(Cinet); 7高级电信研究计算神经科学实验室,2-2-2 Hikaridai,Seika-Cho,Soraku-Gun,京都,日本,日本
1 MBF Bioscience, Williston, VT 05495, USA 2 Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA 3 Department of Biological Sciences, Columbia University, New York, NY 10027, USA 4 Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA 5 Department of Neuroscience and Physiology, New York University Grossman School医学;纽约市,10016,美国6纽约大学格罗斯曼医学院精神病学系;纽约市,美国10016。7纽约大学神经科学中心,纽约,纽约10003,美国8综合癫痫中心,纽约大学格罗斯曼医学院神经病学系;纽约市,10016,美国9纽约大学格罗斯曼医学院神经外科系;纽约市,10016,美国,摘要的三维(3D)在动物模型的完整大脑以及大型人类和非人类和非人类灵长类动物大脑标本的整体化成像对于理解生理神经网络连接模式及其病理学改变的病理学改变而言至关重要。灯页显微镜已成为一种高效的成像方式,用于对大型清除样品的快速高分辨率成像。但是,光显微镜中照明和检测光学的正交布置限制了可以成像的样品的大小。最近开发的光片theta显微镜(LSTM)技术通过利用两个照明光路径的独特布置倾斜到检测光路径,同时允许检测光路相对于试样表面的垂直排列。在这里,我们报告了下一代,完全集成和用户友好的LSTM系统的开发,以在整个大型标本中均匀地均匀地下分辨率成像,而不会约束横向(XY)大小。此外,我们为图像获取,数据存储,预处理和后处理,增强和定量分析提供了无缝集成的工作流程。我们通过完整的小鼠大脑和人脑样品的高分辨率3D成像以及完整的数据分析(包括数字神经元追踪,血管重建和基于设计的立体分析)在3D中证明了系统性能。这种技术增强和用户友好的LSTM实现将在不同类型的非常大的样本中快速对分子和细胞特征的分子和细胞特征进行快速定量映射。关键字:轻度显微镜,轻纸theta显微镜,连接组学,神经科学:0009-0009-0009-2439-8045(M.F.),0009-0007-1876-4104(P.L.),0009-0006-4374-3711(D.D.),0009-0000-5928-8692(N.OC。),0009-0005-0168-9190(B.H.),0009-0004-0565-9872(J.B.1),0009-0003-7441-9496(N.R.),0009-0004-3698-1784(A.W.),0009- 0004-5284-1087(S.A.),0009-0009-8144-0115(P.A.),0000-0002-7559-0936(J.B.2),0000-0003-4350-0569(T.B.),0000-0002-0026-2006(C.G.),0000-0003-0044-4632(O.D.),0000-0002-7559-0936(J.B.),0000-0002-4229-2860(R.T.),0000-0003-4463-207X(J.G.)(Y.B.1,Jeffrey Blaisdell)。
6 Department of Medicine, Loyola University Medical Center, Chicago, IL 7 Department of Emergency Medicine, University of Wisconsin-Madison, Madison WI 8 BayCare, Clearwater, FL 9 Department of Medicine, Yale University, New Haven, CT Corresponding author: Matthew M Churpek, MD, MPH, PhD Email: mchurpek@medicine.wisc.edu Financial support used for the study: This work was supported by funding根据其研究创新与风险投资部(DRIVE)的一部分,来自美国国立卫生研究院(PI:MMC; R01HL157262)和生物医学高级研发局(Barda),作为其研究创新与风险投资部(DRIVE)的一部分。披露和利益冲突:Drs。Churpek和Edelson是获得患者风险评估专利(US11410777)专利的发明者,并从芝加哥大学获得此知识产权的特许权使用费。Edelson博士受雇,并在Agilemd拥有股权,该股份销售和分发Ecart。关键字:预警评分;临床恶化;机器学习;快速响应系统;人工智能抽象词计数:283主要文字字数:2,999
2024年3月28日,当我上次在更新时发言时 - 我的第一个 - 我曾担任出口执法助理秘书大约六个月。在那六个月中,俄罗斯启动了对乌克兰的全面入侵,感觉就像我们出口控制规则的速度和变化范围是不懈的。将近两年后,仍然有这种感觉。自从我上次与您交谈以来,我们已经站起来了颠覆性的技术打击力量,在实体名单中增加了数百个政党,加强了我们与行业,机构和国际同行的合作伙伴关系,并对许多非法俄罗斯,中国人和伊朗采购网络提出了指控。鉴于我们目前面临的全球威胁环境,我们的执法工作从未对美国国家安全战略更重要。,我与您交谈的不仅仅是像您这样的从业者和贸易专业人员。在上次更新与大家交谈后的几个月后,我回到了我的家乡马萨诸塞州波士顿,与我以前的高中罗克斯伯里拉丁语的现任学生交谈。与那里的教师和学生交谈,我很明显罗克斯伯里拉丁的总体哲学一直保持不变 - 角色教育与学术上严格的教育同样重要。这所学校成立于1645年,是北美不断存在的最古老的中学,它具有独特的价值观,并要求其学生生活在他们身边。为一个例子,学校明确有关所有交易中的诚实。实际上,这是学校手册中列出的第一个基本标准。当我还是一名学生时,Roxbury Latin当时的托尼·贾维斯(Tony Jarvis)提醒我们每个考试期都不值得我们声誉的代价。作弊是不值得的。当然,这个原则是正确的,不仅是罗克斯伯里拉丁语。采取快捷方式完成销售也是不值得的。利润不能成为唯一的考虑。我们需要行业来优先考虑我们的出口规则 - 因为赌注从未如此高。根据对美国情报界的年度威胁评估,仅发布了
这是被接受出版的作者手稿,并且已经进行了完整的同行评审,但尚未通过复制,排版,分页和校对过程,这可能会导致此版本和记录版本之间的差异。请引用本文为doi:10.1002/aic.16814
摘要:神经退行性疾病(NDDS)是无法治愈的,令人衰弱的疾病,导致中枢神经系统(CNS)中神经细胞的进行性变性和/或死亡。对CNS疾病的可行治疗靶标和新治疗方法的认同,尤其是NDD是药物发现领域的主要挑战。 这些困难可以归因于所涉及的细胞的多样性,神经回路的极端复杂性,组织再生的能力有限以及我们对基本病理过程的不完全理解。 药物发现是一个复杂而多学科的过程。 当前药物发现方案中的筛查速率意味着只有一种可行的药物可能是由于数百万筛查的化合物而产生的,因此需要改善发现技术和方案以解决多种损耗原因。 这已经确定需要筛选较大的库,其中使用有效的高通量筛选(HTS)成为发现过程中的关键。 HT可以每天研究成千上万种化合物的含量。 但是,如果可以筛选较少的化合物并损害成功的可能性,则成本和时间将大大降低。 为此,计算机辅助设计,计算机库中的最新进展以及分子对接软件结合了基于细胞平台的升级,已进化,以提高筛选效率,并具有更高的可预测性和临床适用性。对CNS疾病的可行治疗靶标和新治疗方法的认同,尤其是NDD是药物发现领域的主要挑战。这些困难可以归因于所涉及的细胞的多样性,神经回路的极端复杂性,组织再生的能力有限以及我们对基本病理过程的不完全理解。药物发现是一个复杂而多学科的过程。当前药物发现方案中的筛查速率意味着只有一种可行的药物可能是由于数百万筛查的化合物而产生的,因此需要改善发现技术和方案以解决多种损耗原因。这已经确定需要筛选较大的库,其中使用有效的高通量筛选(HTS)成为发现过程中的关键。HT可以每天研究成千上万种化合物的含量。但是,如果可以筛选较少的化合物并损害成功的可能性,则成本和时间将大大降低。为此,计算机辅助设计,计算机库中的最新进展以及分子对接软件结合了基于细胞平台的升级,已进化,以提高筛选效率,并具有更高的可预测性和临床适用性。我们在这里审查了HT在当代药物发现过程中,尤其是NDD的越来越多的作用,并评估其成功应用的标准。我们还讨论了HTS对新型NDD疗法的需求,并研究了验证新药物靶标和开发NDD的新疗法的当前主要挑战。