Geotn Ecoli Mabs Msmeg Mav Mmar Mbovis Mtb Geotn 100 - - - - - - - Ecoli 29 100 - - - - - - Mabs 29 37 100 - - - - - Msmeg 29 36 74 100 - - - - Mav 28 36 - 747 - 703 - Mmar 77 80 100 - - Mbovis 28 35 73 79 80 84 100 - Mtb 28 35 73 79 80 84 100 100 Geotn – G. thermodenitrificans;大肠杆菌——大肠杆菌; Mabs——脓肿分枝杆菌; Msmeg – M. smegmatis;小牛 – 219
据报道,鸟分枝杆菌 (Mav) 复合群越来越多地导致免疫系统受损个体发生非结核性感染。治疗复杂且没有疫苗可用。先前的研究表明,使用转基因结核分枝杆菌 (Msm) 作为结核病疫苗载体具有一定的潜力,因为它无致病性,因此免疫功能低下个体可以耐受。在本研究中,我们使用了破坏 EspG 3 (ESX-3 分泌系统的一个组成部分)的 Msm 突变株。与感染野生型 Msm 的细胞相比,感染 Msm 1 espG 3 的巨噬细胞和树突状细胞显示抗原呈递增加。给小鼠接种表达 Mav 抗原 MPT64 的 Msm 1 espG 3 疫苗,可与结核病疫苗牛分枝杆菌 BCG 一样,提供针对 Mav 感染的同等保护。然而,在受到 Mav 攻击后,我们观察到在接种 Msm 1 espG 3 :: mpt64 的小鼠中,产生 IL-17 的 CD4 +(Th17 细胞)和 CD8 +(Tc17 细胞)T 细胞的频率很高,而在接种 BCG 的小鼠中则没有看到。从接种 Msm 1 espG 3 的小鼠过继转移细胞表明,来自 T 细胞区室的细胞有助于防止 Mav 感染。进一步的实验表明,富含 Tc17 的 T 细胞并不能提供针对后续 Mav 感染的预防性保护,但是当将富含 Tc17 的细胞转移到已经感染 Mav 的小鼠身上时,观察到了治疗效果。这些初步发现很重要,因为它们表明 Tc17 细胞在分枝杆菌感染中具有以前未知的作用。总之,Msm 1 espG 3 有望成为针对 Mav 以及其他可能 (myco) 细菌感染的疫苗载体。
摘要 - 直径为10厘米的自治微型航空车(MAV),由于其板载智能所启用了广泛的适用性,因此是一种新兴技术。但是,这些平台在运行的机载电源信封中受到很大的限制,即少于几百兆瓦,可以将车载处理器固定到简单的微控制器单元(MCUS)的类别中。这些MCU缺乏高级安全功能,从而通向广泛的网络安全漏洞,从相同频率的代理商之间的通信到恶意代码的机上执行。这项工作提出了一种开源系统 - 芯片(SOC)设计,该设计集成了由8核32位并行可编程加速器加速的64位Linux功能的主机处理器。异质系统体系结构与基于信任的开源Opentitan根源相结合。为了展示我们的设计,我们提出了一个用例,在该用例中,Opentitan在MAV登上的SOC上发现安全漏洞,并驾驶其独家GPIO开始启动LED闪烁的例程。此过程体现了两个棕榈大小的MAV之间的非常规的视觉通信:接收器MAV分类发件人的LED状态(ON或OFF),并且在平行加速器上运行的板载卷积神经网络;然后,它在1.3 s中重建一个高级消息,比当前的商业解决方案快2.3×。
摘要 本文报告了弗劳恩霍夫 IZFP 进行的一项调查,其中旋翼八旋翼微型飞行器 (MAV) 系统用于扫描建筑物,以使用高分辨率数码相机进行检查和监控。MAV 配备了基于微控制器的飞行控制系统和不同的传感器,用于导航和飞行稳定。照片以高速度和高频率拍摄,并存储在机上,然后在 MAV 完成任务后下载。然后将拍摄的照片拼接在一起,以获得完整的 2D 图像,其分辨率允许在毫米范围内观察到损坏和开裂。在后续步骤中,开发了一种图像处理软件,可以专门过滤掉开裂模式,这些模式可以在未来的步骤中从统计模式识别的角度进一步分析。引言民用基础设施建筑数量的增加已成为其老化过程和生命周期管理的一个问题。监测这些建筑物状况的传统方法是仅通过人工目视检查,可能还需要一些抽头测试。这种监测方式主要提供有关混凝土或石材结构开裂情况和可能脱落的覆盖层的完整信息。当考虑大坝、冷却塔、教堂或甚至简单的多层建筑的结构时,提供这些信息所需的努力可能会变得费力,因为检查需要大量的起重设备。一种规避这种努力的方法是使用无人驾驶飞行器 (UAV) 以及甚至小型的微型飞行器 (MAV) 作为机载传感器系统来捕获所需的数据。这种无人机在无损检测 (NDT) 中的潜在应用 _____________
在本文中,我们为敏捷机动四旋翼微型飞行器 (MAV) 技术演示平台提供了一种系统辨识、模型拼接和基于模型的飞行控制系统设计方法。所提出的 MAV 设计用于在悬停/低速和快速前飞条件下进行敏捷机动,在这些条件下可以观察到系统动力学的显著变化。因此,这些显著的变化会导致使用基于传统悬停或前飞模型的控制器设计时性能和精度大幅下降。为了捕捉变化的动态,我们考虑了一种源自全尺寸载人飞机和旋翼机领域的方法。具体而言,使用频域系统辨识方法获得悬停和前飞中的 MAV 的线性数学模型,并在时域中对其进行验证。这些点模型与配平数据拼接,并生成准非线性数学模型以用于仿真目的。在基于多目标优化的飞行控制系统设计方法中使用已识别的线性模型,其中使用多个处理质量规范来优化控制器参数。使用运动学缩放缩小了 ADS-33E-PRF 的横向重新定位和纵向出发/中止任务任务元素,以评估所提出的飞行控制系统。执行位置保持、轨迹跟踪和攻击性分析,蒙特卡罗模拟和实际
** 原则,已就福克斯先生和伯克先生之间的争议作出了裁决;前者被宣称坚持他们共同遵守的纯洁教义,并“始终遵循这些教义”。一致意见是,伯克先生已退出和平谈判。” 1791 年 5 月 1 日,芝加哥,第 159-169 页。
研究领域 ▪ 飞行动力学与控制、系统 ID、时间周期系统 ❑ 旋翼机(直升机、eVTOL、UAS) ❑ 扑翼飞行(昆虫/鸟类、扑翼 MAV) ❑ 固定翼飞机(扑尾概念飞机)
旋转翼航空车提供机动性和垂直起飞和降落(VTOL)优势,优于固定翼系统。旋转翼系统确实具有相对较高的能量需求,因此飞行时间较短,因此对固定翼对应物的能量依赖性更大。光伏技术的进步已导致太阳能电池的特定功率(功率到重量比率)显着增加,从而实现了太阳能旋转旋转飞机的设计,现在是微型变体的。呈现的微型航空车辆(MAV)是微型太阳能电机,是0.15 m×0.15 m×0.02 m的0.02 m太阳能可调的无线电控制飞机。0.071千克飞机可以平均飞行3.5分钟,在25°C的1000 W/m 2辐照度下大约68分钟内充电,并且可以在没有阳光的情况下冬眠38天。本文通过使它们能够在不返回基地进行充电的情况下,探讨了增加市售光伏细胞的使用,以增加多转子MAV的能量自主权。已经提出了一个工作原型,其中包含了电池管理系统,自动电源开关,低功率睡眠模式以及第一人称视图(FPV)摄像头。