1。O'Neill,吉姆。 恢复了反穆斯特抗药性(2014年)。 2。 Boucher,H。W.和Al。 临床。 感染。 dis。 48,1-12(2009)。 3。 Ha,K。P.和Al。 MBIO 11,(2020)。 4。 Clarke,R。S.和,K。P.和Edwards,A。M. Biorxiv。 预印(2021)5。 Flow,C。S. Q. bioorg。 但是。 化学。 27,114962(2019)。O'Neill,吉姆。恢复了反穆斯特抗药性(2014年)。2。Boucher,H。W.和Al。 临床。 感染。 dis。 48,1-12(2009)。 3。 Ha,K。P.和Al。 MBIO 11,(2020)。 4。 Clarke,R。S.和,K。P.和Edwards,A。M. Biorxiv。 预印(2021)5。 Flow,C。S. Q. bioorg。 但是。 化学。 27,114962(2019)。Boucher,H。W.和Al。临床。感染。dis。48,1-12(2009)。 3。 Ha,K。P.和Al。 MBIO 11,(2020)。 4。 Clarke,R。S.和,K。P.和Edwards,A。M. Biorxiv。 预印(2021)5。 Flow,C。S. Q. bioorg。 但是。 化学。 27,114962(2019)。48,1-12(2009)。3。Ha,K。P.和Al。 MBIO 11,(2020)。 4。 Clarke,R。S.和,K。P.和Edwards,A。M. Biorxiv。 预印(2021)5。 Flow,C。S. Q. bioorg。 但是。 化学。 27,114962(2019)。Ha,K。P.和Al。MBIO 11,(2020)。 4。 Clarke,R。S.和,K。P.和Edwards,A。M. Biorxiv。 预印(2021)5。 Flow,C。S. Q. bioorg。 但是。 化学。 27,114962(2019)。MBIO 11,(2020)。4。Clarke,R。S.和,K。P.和Edwards,A。M. Biorxiv。预印(2021)5。Flow,C。S. Q.bioorg。但是。化学。27,114962(2019)。27,114962(2019)。
开始分析来自加拿大家庭的数千种母乳样本。在这种情况下,我们对加拿大这里更普遍的食物过敏,肥胖和问题等事物更感兴趣。但是,当然,母乳也与世界其他地方普遍存在的其他疾病有关。因此,盖茨基金会资助的研究是在他们正在进行的其他一些研究上都可以背负。所以一个在坦桑尼亚,一个在布基纳法索,另一个在巴基斯坦。因此,我们能够与这些研究联系,让它们收集母乳样本,然后将其送到曼尼托巴省。,然后我的团队与世界各地的专家建立了联系。,因此我们将这支大型团队聚集在一起,然后将所有这些数据放在一起,并尝试了解它如何合作?它如何支持婴儿健康?
这项研究的结果发表在2024年7月31日(星期三)的《美国科学杂志》(在线)中。 https://doi.org/10.1128/mbio.01728-24
MBIO审查员,数据科学杂志,医学统计,生物播种,生物敏化的简介,计算和结构生物技术学报,MSYSTEMS,BMC微生物学,基因组生物学,生物信息学,生物信息学,生物信息学,熵,自然科学报道,计算和图形统计学,计算杂志,BMC Biocic,BMC BMC BMC BMC BMC BMC BMC Inminds, ,应用统计的年鉴,Elife,环境数据科学,R杂志,生物识别技术,生物统计学,计算机科学领域,美国统计协会杂志,Mi-Crobiome,F1000研究。
1 Azuma等。“人类肝细胞在fah - / - /rag2 - / - /il2rg - / - 小鼠中的稳健膨胀。”自然生物技术(2007)。2冯·施文(Von Schaewen)等。“通过病毒适应扩大丙型肝炎病毒的宿主范围。”MBIO(2016。 3 Valenti等。 “ I148M多态性的纯合性影响非酒精性脂肪肝病患者的肝纤维化。” Hepatology(2010)。 4 Srinivasan等。 “肝磷酸合成酶1-缺乏的肝脏小鼠模型。” 遗传代谢疾病杂志(2019年)。 5 Hu,Huili等。 “功能小鼠和人肝细胞作为3D器官的长期扩张。” Cell(2018)。MBIO(2016。3 Valenti等。 “ I148M多态性的纯合性影响非酒精性脂肪肝病患者的肝纤维化。” Hepatology(2010)。 4 Srinivasan等。 “肝磷酸合成酶1-缺乏的肝脏小鼠模型。” 遗传代谢疾病杂志(2019年)。 5 Hu,Huili等。 “功能小鼠和人肝细胞作为3D器官的长期扩张。” Cell(2018)。3 Valenti等。“ I148M多态性的纯合性影响非酒精性脂肪肝病患者的肝纤维化。”Hepatology(2010)。 4 Srinivasan等。 “肝磷酸合成酶1-缺乏的肝脏小鼠模型。” 遗传代谢疾病杂志(2019年)。 5 Hu,Huili等。 “功能小鼠和人肝细胞作为3D器官的长期扩张。” Cell(2018)。Hepatology(2010)。4 Srinivasan等。“肝磷酸合成酶1-缺乏的肝脏小鼠模型。”遗传代谢疾病杂志(2019年)。5 Hu,Huili等。 “功能小鼠和人肝细胞作为3D器官的长期扩张。” Cell(2018)。5 Hu,Huili等。“功能小鼠和人肝细胞作为3D器官的长期扩张。”Cell(2018)。Cell(2018)。
fdst 405食品微生物学交叉列表:BIOS 445,BIOS 845,FDST 805先决条件:BIOS 312注释:Bioc 401或Bioc 431推荐描述:自然,生理和食物中微生物的相互作用。食品传播疾病的简介,食品加工系统对食物菌群的影响,食物保存原理,食物变质和微生物产生的食物。食品植物的卫生和制定食品微生物标准的标准。学分:每学期最高学分:每学位最高学分3个学分:3个评分选项:提供选项的分级:秋季/SPR的先决条件:BIOS 446,BIOS 846,FDST 406,FDST 806; FDST 424,FDST 824; FDST 425,FDST 825; FDST 455L,FDST 855L,MBIO 455L; FDST 460,FDST 860; FDST 867; FDST 875; FDST 877; FDST 908B
1。Luckow VA,萨默斯医学博士。杆状病毒表达载体发展的趋势。生物技术。1988; 6(1):47-55。 doi:10。 1038/nbt0188-47 2。 Possee Rd。 杆状病毒作为基因表达载体。 Annu Rev Micro-Biol。 1988; 42:177-199。 doi:10.1146/annurev.mi.42.100188.001141 3。 Kost T.重组杆状病毒作为昆虫和哺乳动物细胞的表达载体。 Curr Opin Biotechnol。 1999; 10(5):428-433。 doi:10.1016/s0958-1669(99)00005-1 4。 Pijlman GP。 包裹的病毒样颗粒作为针对病原藻病毒的疫苗。 生物技术j。 2015; 10(5):659-670。 doi:10.1002/ biot.201400427 5。 杆状病毒表达系统的机会和挑战。 J Invertebr Pathol。 2011; 107(增刊):S3-S15。 doi:10.1016/j.jip.2011.05.001 6。 Kost TA,Condrey JP,Jarvis DL。 杆状病毒作为昆虫和哺乳动物细胞中蛋白质表达的多功能载体。 nat生物技术。 2005; 23(5):567-575。 doi:10.1038/nbt1095 7。 rold〜AO A,Mellado MCM,Castilho LR,Carrondo MJT,Alves PM。 疫苗发育中的病毒样颗粒。 专家Rev疫苗。 2010; 9(10):1149-1176。 doi:10.1586/erv.10.115 8。 Cox M.现代技术:首选的生物安全策略? vaccin。 2017; 35(44):5949-5950。 doi:10.1016/j.vaccine.2017.03.0489。VanOosten L,Altenburg JJ,Fougeroux C等。 mbio。 2021; 12:e0181321。 n Engl J Med。1988; 6(1):47-55。 doi:10。1038/nbt0188-47 2。Possee Rd。杆状病毒作为基因表达载体。Annu Rev Micro-Biol。1988; 42:177-199。 doi:10.1146/annurev.mi.42.100188.001141 3。 Kost T.重组杆状病毒作为昆虫和哺乳动物细胞的表达载体。 Curr Opin Biotechnol。 1999; 10(5):428-433。 doi:10.1016/s0958-1669(99)00005-1 4。 Pijlman GP。 包裹的病毒样颗粒作为针对病原藻病毒的疫苗。 生物技术j。 2015; 10(5):659-670。 doi:10.1002/ biot.201400427 5。 杆状病毒表达系统的机会和挑战。 J Invertebr Pathol。 2011; 107(增刊):S3-S15。 doi:10.1016/j.jip.2011.05.001 6。 Kost TA,Condrey JP,Jarvis DL。 杆状病毒作为昆虫和哺乳动物细胞中蛋白质表达的多功能载体。 nat生物技术。 2005; 23(5):567-575。 doi:10.1038/nbt1095 7。 rold〜AO A,Mellado MCM,Castilho LR,Carrondo MJT,Alves PM。 疫苗发育中的病毒样颗粒。 专家Rev疫苗。 2010; 9(10):1149-1176。 doi:10.1586/erv.10.115 8。 Cox M.现代技术:首选的生物安全策略? vaccin。 2017; 35(44):5949-5950。 doi:10.1016/j.vaccine.2017.03.0489。VanOosten L,Altenburg JJ,Fougeroux C等。 mbio。 2021; 12:e0181321。 n Engl J Med。1988; 42:177-199。 doi:10.1146/annurev.mi.42.100188.001141 3。Kost T.重组杆状病毒作为昆虫和哺乳动物细胞的表达载体。Curr Opin Biotechnol。1999; 10(5):428-433。 doi:10.1016/s0958-1669(99)00005-1 4。 Pijlman GP。 包裹的病毒样颗粒作为针对病原藻病毒的疫苗。 生物技术j。 2015; 10(5):659-670。 doi:10.1002/ biot.201400427 5。 杆状病毒表达系统的机会和挑战。 J Invertebr Pathol。 2011; 107(增刊):S3-S15。 doi:10.1016/j.jip.2011.05.001 6。 Kost TA,Condrey JP,Jarvis DL。 杆状病毒作为昆虫和哺乳动物细胞中蛋白质表达的多功能载体。 nat生物技术。 2005; 23(5):567-575。 doi:10.1038/nbt1095 7。 rold〜AO A,Mellado MCM,Castilho LR,Carrondo MJT,Alves PM。 疫苗发育中的病毒样颗粒。 专家Rev疫苗。 2010; 9(10):1149-1176。 doi:10.1586/erv.10.115 8。 Cox M.现代技术:首选的生物安全策略? vaccin。 2017; 35(44):5949-5950。 doi:10.1016/j.vaccine.2017.03.0489。VanOosten L,Altenburg JJ,Fougeroux C等。 mbio。 2021; 12:e0181321。 n Engl J Med。1999; 10(5):428-433。 doi:10.1016/s0958-1669(99)00005-1 4。Pijlman GP。包裹的病毒样颗粒作为针对病原藻病毒的疫苗。生物技术j。2015; 10(5):659-670。 doi:10.1002/ biot.201400427 5。 杆状病毒表达系统的机会和挑战。 J Invertebr Pathol。 2011; 107(增刊):S3-S15。 doi:10.1016/j.jip.2011.05.001 6。 Kost TA,Condrey JP,Jarvis DL。 杆状病毒作为昆虫和哺乳动物细胞中蛋白质表达的多功能载体。 nat生物技术。 2005; 23(5):567-575。 doi:10.1038/nbt1095 7。 rold〜AO A,Mellado MCM,Castilho LR,Carrondo MJT,Alves PM。 疫苗发育中的病毒样颗粒。 专家Rev疫苗。 2010; 9(10):1149-1176。 doi:10.1586/erv.10.115 8。 Cox M.现代技术:首选的生物安全策略? vaccin。 2017; 35(44):5949-5950。 doi:10.1016/j.vaccine.2017.03.0489。VanOosten L,Altenburg JJ,Fougeroux C等。 mbio。 2021; 12:e0181321。 n Engl J Med。2015; 10(5):659-670。 doi:10.1002/ biot.201400427 5。杆状病毒表达系统的机会和挑战。J Invertebr Pathol。2011; 107(增刊):S3-S15。doi:10.1016/j.jip.2011.05.001 6。Kost TA,Condrey JP,Jarvis DL。杆状病毒作为昆虫和哺乳动物细胞中蛋白质表达的多功能载体。nat生物技术。2005; 23(5):567-575。 doi:10.1038/nbt1095 7。 rold〜AO A,Mellado MCM,Castilho LR,Carrondo MJT,Alves PM。 疫苗发育中的病毒样颗粒。 专家Rev疫苗。 2010; 9(10):1149-1176。 doi:10.1586/erv.10.115 8。 Cox M.现代技术:首选的生物安全策略? vaccin。 2017; 35(44):5949-5950。 doi:10.1016/j.vaccine.2017.03.0489。VanOosten L,Altenburg JJ,Fougeroux C等。 mbio。 2021; 12:e0181321。 n Engl J Med。2005; 23(5):567-575。 doi:10.1038/nbt1095 7。rold〜AO A,Mellado MCM,Castilho LR,Carrondo MJT,Alves PM。疫苗发育中的病毒样颗粒。专家Rev疫苗。2010; 9(10):1149-1176。 doi:10.1586/erv.10.115 8。 Cox M.现代技术:首选的生物安全策略? vaccin。 2017; 35(44):5949-5950。 doi:10.1016/j.vaccine.2017.03.0489。VanOosten L,Altenburg JJ,Fougeroux C等。 mbio。 2021; 12:e0181321。 n Engl J Med。2010; 9(10):1149-1176。 doi:10.1586/erv.10.115 8。Cox M.现代技术:首选的生物安全策略?vaccin。2017; 35(44):5949-5950。 doi:10.1016/j.vaccine.2017.03.0489。VanOosten L,Altenburg JJ,Fougeroux C等。 mbio。 2021; 12:e0181321。 n Engl J Med。2017; 35(44):5949-5950。 doi:10.1016/j.vaccine.2017.03.0489。VanOosten L,Altenburg JJ,Fougeroux C等。mbio。2021; 12:e0181321。n Engl J Med。显示糖基化尖峰S1结构域的两组分纳米颗粒疫苗可诱导针对SARS-COV-2变体的中和抗体反应。doi:10.1128/mbio.01813-21 10。Shinde V,Bhikha S,Hoosain Z等。NVX-COV2373 COVID-19疫苗对B.1.351变体的功效。 2021; 384(20):1899-1909。 doi:10.1056/nejmoa2103055 11。 Anurag SR,Winkle H.逐饰方法。 nat生物技术。 2009; 27(1):26-34。 doi:10.1038/nbt0109-26 12。 Kiviharju K,Salonen K,Moilanen U,Meskanen E,Leisola M,EerikäinenT。生物反应器种植中的在线生物量测量:两个在线探针的比较研究。 J IND微生物生物技术。 2007; 34(8):561-566。 doi:10.1007/s10295- 007-0233-5 13。 Carvell JP,Dowd JE。 使用放射频率阻抗在线测量和控制细胞培养生产过程中的可行细胞密度。 细胞技术。 2006; 50(1 - 3):35-48。 doi:10。 1007/s10616-005-3974-x 14。 Ude C,Schmidt-Hager J,Findeis M,John GT,Scheper T,BeutelS。在户外生物群传感器的应用中,在光学多感官平台中的应用原型用于生物技术相关的增长监测NVX-COV2373 COVID-19疫苗对B.1.351变体的功效。2021; 384(20):1899-1909。 doi:10.1056/nejmoa2103055 11。Anurag SR,Winkle H.逐饰方法。nat生物技术。2009; 27(1):26-34。 doi:10.1038/nbt0109-26 12。 Kiviharju K,Salonen K,Moilanen U,Meskanen E,Leisola M,EerikäinenT。生物反应器种植中的在线生物量测量:两个在线探针的比较研究。 J IND微生物生物技术。 2007; 34(8):561-566。 doi:10.1007/s10295- 007-0233-5 13。 Carvell JP,Dowd JE。 使用放射频率阻抗在线测量和控制细胞培养生产过程中的可行细胞密度。 细胞技术。 2006; 50(1 - 3):35-48。 doi:10。 1007/s10616-005-3974-x 14。 Ude C,Schmidt-Hager J,Findeis M,John GT,Scheper T,BeutelS。在户外生物群传感器的应用中,在光学多感官平台中的应用原型用于生物技术相关的增长监测2009; 27(1):26-34。 doi:10.1038/nbt0109-26 12。Kiviharju K,Salonen K,Moilanen U,Meskanen E,Leisola M,EerikäinenT。生物反应器种植中的在线生物量测量:两个在线探针的比较研究。 J IND微生物生物技术。 2007; 34(8):561-566。 doi:10.1007/s10295- 007-0233-5 13。 Carvell JP,Dowd JE。 使用放射频率阻抗在线测量和控制细胞培养生产过程中的可行细胞密度。 细胞技术。 2006; 50(1 - 3):35-48。 doi:10。 1007/s10616-005-3974-x 14。 Ude C,Schmidt-Hager J,Findeis M,John GT,Scheper T,BeutelS。在户外生物群传感器的应用中,在光学多感官平台中的应用原型用于生物技术相关的增长监测Kiviharju K,Salonen K,Moilanen U,Meskanen E,Leisola M,EerikäinenT。生物反应器种植中的在线生物量测量:两个在线探针的比较研究。J IND微生物生物技术。2007; 34(8):561-566。 doi:10.1007/s10295- 007-0233-5 13。 Carvell JP,Dowd JE。 使用放射频率阻抗在线测量和控制细胞培养生产过程中的可行细胞密度。 细胞技术。 2006; 50(1 - 3):35-48。 doi:10。 1007/s10616-005-3974-x 14。 Ude C,Schmidt-Hager J,Findeis M,John GT,Scheper T,BeutelS。在户外生物群传感器的应用中,在光学多感官平台中的应用原型用于生物技术相关的增长监测2007; 34(8):561-566。 doi:10.1007/s10295- 007-0233-5 13。Carvell JP,Dowd JE。 使用放射频率阻抗在线测量和控制细胞培养生产过程中的可行细胞密度。 细胞技术。 2006; 50(1 - 3):35-48。 doi:10。 1007/s10616-005-3974-x 14。 Ude C,Schmidt-Hager J,Findeis M,John GT,Scheper T,BeutelS。在户外生物群传感器的应用中,在光学多感官平台中的应用原型用于生物技术相关的增长监测Carvell JP,Dowd JE。使用放射频率阻抗在线测量和控制细胞培养生产过程中的可行细胞密度。细胞技术。2006; 50(1 - 3):35-48。 doi:10。 1007/s10616-005-3974-x 14。 Ude C,Schmidt-Hager J,Findeis M,John GT,Scheper T,BeutelS。在户外生物群传感器的应用中,在光学多感官平台中的应用原型用于生物技术相关的增长监测2006; 50(1 - 3):35-48。 doi:10。1007/s10616-005-3974-x 14。Ude C,Schmidt-Hager J,Findeis M,John GT,Scheper T,BeutelS。在户外生物群传感器的应用中,在光学多感官平台中的应用原型用于生物技术相关
根据本通知,圣卡塔琳娜联邦联邦研究所的弗洛里亚波利斯校园局将公开开放。1。PREAMBULO FRAUNHOFER激光ILT技术研究所与德国领先的研究机构之一Fraunhofer-Egesellschaft集成,拥有76个机构,约有30,000名员工,年度研究量为29亿欧元。该研究所提供研究与开发,系统项目和质量保证,咨询和教育。来自各种制造商的几个工业激光系统以及广泛的基础设施,可用于研发工作。