1.) Ishino, Y.、Shinagawa, H.、Makino, K.、Amemura, M. 和 Nakata, A. (1987)。负责大肠杆菌碱性磷酸酶同工酶转化的 iap 基因的核苷酸序列以及该基因产物的鉴定。J. Bacteriol. 169:5429-5433 2.) Jansen, R.、van Embden, JDA、Gaastra, W. 和 Schouls, LM (2002)。在原核生物中鉴定一种新型序列重复家族。OMICS 6:23-33 3.) Schaeffer, SK 和 Nakata, PA (2015)。CRISPR/Cas9 介导的植物基因组编辑和基因替换:从实验室到田野的转变。植物科学。 240:130-142 4.) Gomaa, AA, Klumpe, HE, Luo, ML, Selle, K., Barrangou, R. 和 Beisel, CL (2014) 使用基因组靶向 CRISPR-Cas 系统可编程去除细菌菌株。mBio 5(1):e00928-13 5.) Cui, L. 和 Bikard, D. (2016). Cas9 切割对大肠杆菌染色体的影响。Nucleic Acids Res. 44(9):4243-4251 6.) Yang, H., Jia, M., Geornaras, I., Woerner, DR, Morley, PS 和 Belk, KE (2017). 扩展 CRISPR-Cas9 系统在牛肉生产中序列特异性消除食源性病原体的能力。最终报告由美国科罗拉多州立大学肉类安全与质量中心提交给美国全国牛肉协会,科罗拉多州柯林斯堡,24 页。7.) Yang, H., Jia, M., Geornaras, I., Woerner, DR, Morley, PS 和 Belk, KE (2018)。构建噬菌体介导系统以递送 CRISPR-Cas9 抗菌剂,从而针对序列特异性地消除牛肉生产中的食源性病原体。最终报告由美国科罗拉多州立大学肉类安全与质量中心提交给美国全国牛肉协会,科罗拉多州柯林斯堡,32 页。8.) Luo, ML, Leenay, RT 和 Beisel, CL (2016)。基于 CRISPR 的细菌工具的现状和未来前景。生物技术与生物工程。113(5):930-43。 9.) de la Fuente-Núñez, C. 和 Lu, TK (2017)。CRISPR-Cas9 技术:在基因组工程中的应用、序列特异性抗菌药物的开发以及未来前景。Integr Biol (Camb)。9(2):109-122。10.) Es, I.、Gavahian, M.、Marti-Quijal, FJ、Lorenzo, JM、Khaneghah, AM、Tsatsanis, C.、Kampranis, SC 和 Barba, FJ (2019)。CRISPR-Cas9 基因组编辑机制在食品和农业科学中的应用:现状、未来前景和相关挑战。Biotechnol. Adv. 37:410-421 11.) Van der Berg, JP、Kleter, GA、Battaglia, E.、Groenen, MAM 和 Kok, EJ (2020)。牛基因改造的发展及其对监管、安全和可追溯性的影响。农业科学工程前沿 7:136-147 12.) Yang, H., Dong, J., Geornaras, I., Thomas, MG, Prenni, JE & Belk, KE (2021). 使用基于组学的分析方法和牛细胞系模型系统评估和减轻基于 CRISPR-Cas9 的靶向杀灭系统在肉牛生产中的潜在生物安全风险。科罗拉多州立大学肉类安全与质量中心(科罗拉多州柯林斯堡)提交给美国全国牛肉协会的最终报告,58 页。
[4] Gibson B, Wilson DJ, Feil E 等人。野生环境中细菌倍增时间的分布。Proc Biol Sci, 2018, 285: 20180789 [5] Yu J, Liberton M, Cliften PF 等人。Synechococcus elongatus UTEX 2973,一种利用光和二氧化碳进行生物合成的快速生长蓝藻底盘。Sci Rep, 2015, 5: 8132 [6] Paddon CJ, Westfall PJ, Pitera DJ 等人。强效抗疟药青蒿素的高水平半合成生产。Nature, 2013, 496: 528-32 [7] Lin MT, Occhialini A, Andralojc PJ 等人。一种更快的 Rubisco,具有提高作物光合作用的潜力。 Nature, 2014, 513: 547-50 [8] Bailey-Serres J, Parker JE, Ainsworth EA 等. 提高作物产量的遗传策略。Nature, 2019, 575: 109-18 [9] Gleizer S, Ben-Nissan R, Bar-On YM 等. 转化大肠杆菌从二氧化碳生成所有生物质碳。Cell, 2019, 179: 1255-63 [10] Chen FYH, Jung HW, Tsuei CY 等. 将大肠杆菌转化为仅靠甲醇生长的合成甲基营养菌。Cell, 2020, 182: 933-46 [11] Kaneko T, Sato S, Kotani H 等.单细胞蓝藻Synechocystis sp. 菌株 PCC6803 的基因组序列分析。II. 整个基因组的序列测定和潜在蛋白质编码区的分配。DNA Res,1996,3:109 [12] van Alphen P、Najafabadi HA、dos Santos FB 等人。通过确定其培养的局限性来提高 Synechocystis sp. PCC 6803 的光自养生长率。Biotechnol J,2018,13:e1700764 [13] Sheng J、Kim HW、Badalamenti JP 等人。温度变化对台式光生物反应器中 Synechocystis sp PCC6803 的生长率和脂质特性的影响。 Bioresour Technol, 2011, 102: 11218-25 [14] 张胜山, 郑胜南, 孙建华, 等. 通过便捷引入 AtpA-C252F 突变快速提高蓝藻细胞工厂的高光和高温耐受性。Front Microbiol, 2021, 12: 647164 [15] Ungerer J, Lin PC, Chen HY, 等. 调整光系统化学计量和电子转移蛋白是蓝藻 Synechococcus elongatus UTEX 2973 快速生长的关键。Mbio, 2018, 9: e02327-17 [16] Wlodarczyk A, Selao TT, Norling B, 等. 新发现的 Synechococcus sp. PCC 11901 是一种可高产生物量的强健蓝藻菌株。Commun Biol, 2020, 3: 215 [17] Jaiswal D, Sengupta A, Sohoni S 等人。从印度分离的一种强健、快速生长且可自然转化的蓝藻 Synechococcus elongatus PCC 11801 的基因组特征和生化特性。Sci Rep, 2018, 8: 16632 [18] Jaiswal D, Sengupta A, Sengupta S 等人。一种新型蓝藻 Synechococcus elongatus PCC 11802 与其邻居 PCC 11801 相比具有不同的基因组和代谢组学特征。Sci Rep, 2020, 10:
建议学生在完成课程要求中提交的工作副本(即作业,实验室报告,项目报告,测试文件,考试文件等)可以由教师和/或部门保留,以进行学生评估和评分,并支持每个工程计划的持续认证。该材料应按照大学的知识产权政策以及《信息自由和保护隐私法》(Manitoba)的隐私规定进行处理。不希望保留工作的学生必须以书面形式告知部门负责人。
luba -woven -woven叙事随着时间的流逝,从梅奇尼科夫(Mechnikov)的童年到其创新的发现,将读者运送到欧洲。Ilya Ilyich Mechnikov是科学史上最著名的名字之一,于1845年出生于古代乌克兰的哈尔基夫市,然后构成了灭绝的苏联。从小就表现出对生物学的兴趣,这使他从事专门从事科学研究的职业。他的学术旅程始于哈尔基夫大学,在那里他学习生物学,并成为一名出色的学生。完成了动物学研究后,Mechnikov对微生物的研究以及与人体的互动兴趣。这种激情使他成为微生物学的先驱之一。为了换取1887年的家园,梅奇尼科夫(Mechnikov)担任了新成立的细菌学研究所主任在敖德萨(Odessa)担任主任,在那里他领导了有关微生物学和免疫学的创新研究,并在农村确立了自己的杰出人物。尽管Mechnikov尚未开发疫苗,但他的思想和发现影响了免疫领域,对于现代疫苗的开发至关重要。由于东欧发生的政治变化,梅奇尼科夫被迫迁移到西欧,在那里他得到了路易斯·巴斯德(Louis Pasteur)的庇护所和支持。在整本书中,我们被介绍给塑造了著名科学家生活的复杂个人和专业关系网络。您与来自世界各地的科学家的知识和经验交流帮助</div>在巴黎设立住所,这有助于建立这个重要的研究所,在这里您度过了大部分的学术生活,并开始使用Elie Metchnikoff的拼写来采用您的名字,对Franophonic语音更加愉快。他们与路易斯·巴斯德(Louis Pasteur)(现代微生物学之父)和保罗·埃里希(Paul Ehrlich)(抗体和补充的发现者,体液免疫理论的柱子)等友谊的亲密关系得到了丰富的细节,揭示了与这些科学巨头团结的深厚纽带。Metchnikoff和他的科学家之间的相互作用以一种敏感性描绘,不仅可以阐明他们的个人成就,而且还阐明了协作和知识交流的转变能力。即使是与德国现任研究人员的争吵和竞争也受到礼貌和尊重的对待,从罗伯特·科赫(Robert Koch)(现代微生物学的另一个父亲)的研究人员应得的研究人员应得。Metchnikoff对免疫学领域的开创性贡献是深度描绘的,包括有关吞噬作用的革命理论(细胞免疫理论),该理论假定免疫系统中的细胞可以包含病原体入侵者,并挑战了先前接受的概念并为了解免疫而开放了新的视野。Metchnikoff的科学生涯不仅以其对科学的非凡个人贡献,还以与朋友和科学家的合作为标志。它以其协作性质和愿意与其他研究人员分享思想和资源的意愿而闻名,甚至能够对更少的财务研究人员慷慨解囊。
1. Fung, TS; Liu, DX, 人类冠状病毒:宿主-病原体相互作用。2019 年微生物学年鉴,73,529-557。2. 吴灿荣,YY,刘洋,张鹏,王雅莉,王琪琪,徐扬,李明雪,郑梦竹,陈丽霞,李华 弗林,COVID-19 的潜在治疗靶点。2020。3. Walls, AC; Park, YJ; Tortorici, MA; Wall, A.; McGuire, AT; Veesler, D., SARS-CoV-2 刺突糖蛋白的结构、功能和抗原性。Cell 2020。 4. https://covid19.who.int/?gclid=CjwKCAjw8df2BRA3EiwAvfZWaP34yJr8HdK4mBed5dKa2T6fl ZjBA5sFDNCata6LM6-eXa1CmMjHwhoCUZQQAvD_BwE 。 5. 达玛,K.;沙伦,K.;蒂瓦里,R.;达达尔,M.;马利克,YS;辛格,KP; Chaicumpa, W.,COVID-19,一种新出现的冠状病毒感染:设计和开发疫苗、免疫疗法和疗法的进展和前景。人类疫苗免疫疗法 2020,1-7。 6.张L.;林,D。孙,X.;柯斯,美国;德罗斯滕,C.;索尔赫林,L.;贝克尔,S.; Rox, K.; Hilgenfeld, R., SARS-CoV-2 主蛋白酶的晶体结构为设计改进的 α-酮酰胺抑制剂提供了基础。Science 2020, eabb3405。7. Liu, J.; Cao, R.; Xu, M.; Wang, X.; Zhang, H.; Hu, H.; Li, Y.; Hu, Z.; Zhong, W.; Wang, M., 羟氯喹是氯喹的一种低毒性衍生物,可在体外有效抑制 SARS-CoV-2 感染。Cell Discov 2020, 6, 16。8. Gao, J.; Tian, Z.; Yang, X., 突破:磷酸氯喹在临床研究中显示出对治疗 COVID-19 相关肺炎的明显疗效。Biosci Trends 2020, 14(1), 72-73。9. Wang, M.; Cao, R.; Zhang, L.; Yang, X.; Liu, J.; Xu, M.; Shi, Z.; Hu, Z.; Zhong, W.; Xiao, G., 瑞德西韦和氯喹在体外有效抑制最近出现的新型冠状病毒 (2019-nCoV)。Cell Res 2020, 30 (3), 269-271。10. Yao, X.; Ye, F.; Zhang, M.; Cui, C.; Huang, B.; Niu, P.; Liu, X.; Zhao, L.; Dong, E.; Song, C.; Zhan, S.; Lu, R.; Li, H.; Tan, W.; Liu, D., 羟氯喹治疗严重急性呼吸道综合征冠状病毒 2 (SARS-CoV-2) 的体外抗病毒活性和优化剂量设计预测。Clin Infect Dis 2020。 11. Dong, L.;Hu, S.;Gao, J.,发现治疗 2019 年冠状病毒病 (COVID-19) 的药物。药物发现治疗学 2020, 14 (1), 58-60。12. https://khgmstokyonetimidb.saglik.gov.tr/TR,f.-.-m.-t.-.-.-c.-.-s.-c.-e.-t.-k.-i.-i.-bh,土耳其。13. Agostini, ML;Andres, EL;Sims, AC;Graham, RL;Sheahan, TP;Lu, X.;Smith, EC;Case, JB;Feng, JY;Jordan, R.;Ray, AS;Cihlar, T.;Siegel, D.;Mackman, RL;Clarke, MO;Baric, RS; Denison, MR,冠状病毒对抗病毒药物瑞德西韦 (GS-5734) 的敏感性由病毒聚合酶和校对核酸外切酶介导。mBio 2018, 9 (2)。14. Brown, AJ;Won, JJ;Graham, RL;Dinnon, KH,第 3 位;Sims, AC;Feng, JY;Cihlar, T.;Denison, MR;Baric, RS;Sheahan, TP,广谱抗病毒药物瑞德西韦可通过高度发散的 RNA 依赖性 RNA 聚合酶抑制人类地方性和人畜共患的德尔塔冠状病毒。抗病毒研究 2019,169,104541。15. Ko, WC;Rolain, JM;Lee, NY;Chen, PL;Huang, CT;Lee, PI;Hsueh, PR,支持使用瑞德西韦治疗 SARS-CoV-2 感染的论据。国际抗微生物剂杂志 2020,105933。16. Tim Smith, P.,BCPS;Jennifer Bushek,PharmD;Tony Prosser,PharmD,COVID-19 药物治疗——潜在选择。爱思唯尔 2020。17. Chu, CM;Cheng, VC;Hung, IF;Wong, MM;Chan, KH;Chan, KS;Kao, RY; Poon, LL; Wong, CL; Guan, Y.; Peiris, JS; Yuen, KY,洛匹那韦/利托那韦在 SARS 治疗中的作用:初步病毒学和临床发现。Thorax 2004, 59 (3), 252-6。18. Chen, F.; Chan, KH; Jiang, Y.; Kao, RY; Lu, HT; Fan, KW; Cheng, VC; Tsui, WH; Hung, IF; Lee, TS; Guan, Y.; Peiris, JS; Yuen, KY,10 种 SARS 冠状病毒临床分离株对选定的抗病毒化合物的体外敏感性。J Clin Virol 2004, 31 (1), 69-75。
从1995年2月7日的第1,387号法令的授权形式返回的国家:Ricardo Vieira Araujo,科学,技术和创新部政策和战略计划秘书处的技术学家 - 米西尔(MCTI),麦克三气候行动的野心:NDCS”,其主要目标是促进Lusophone国家之间的知识共享,并提高其各自的能力,以对全球股票结果(GST)的结果有效,有效地响应,这是由UNDP的气候承诺和全球支持计划(CBIT-GSP)(CBIT GSP)(包括Luanda/Angola)纳入07/04/04/04/04/04/04/04/04/04/04/04/04/04/04/04/04/04/04/04/04/04/04/2024根据案例01245.002910/2024-01,交通有限。Osvaldo Luiz Luiz Leal de Moraes 共享Lusophone国家之间的知识。并提高他们各自对全球股票(GST)结果的有效和有效响应的能力,该结果是由Luanda/Angola的气候承诺和全球支持计划(CBIT-GSP)(CBIT-GSP)组织的,从2024年7月4日至2010年4月4日至14/04/2024。 01245.001973/2024-31。共享Lusophone国家之间的知识。并提高他们各自对全球股票(GST)结果的有效和有效响应的能力,该结果是由Luanda/Angola的气候承诺和全球支持计划(CBIT-GSP)(CBIT-GSP)组织的,从2024年7月4日至2010年4月4日至14/04/2024。 01245.001973/2024-31。共享Lusophone国家之间的知识。并提高他们各自对全球股票(GST)结果的有效和有效响应的能力,该结果是由Luanda/Angola的气候承诺和全球支持计划(CBIT-GSP)(CBIT-GSP)组织的,从2024年7月4日至2010年4月4日至14/04/2024。 01245.001973/2024-31。共享Lusophone国家之间的知识。并提高他们各自对全球股票(GST)结果的有效和有效响应的能力,该结果是由Luanda/Angola的气候承诺和全球支持计划(CBIT-GSP)(CBIT-GSP)组织的,从2024年7月4日至2010年4月4日至14/04/2024。 01245.001973/2024-31。共享Lusophone国家之间的知识。并提高他们各自对全球股票(GST)结果的有效和有效响应的能力,该结果是由Luanda/Angola的气候承诺和全球支持计划(CBIT-GSP)(CBIT-GSP)组织的,从2024年7月4日至2010年4月4日至14/04/2024。 01245.001973/2024-31。共享Lusophone国家之间的知识。并提高他们各自对全球股票(GST)结果的有效和有效响应的能力,该结果是由Luanda/Angola的气候承诺和全球支持计划(CBIT-GSP)(CBIT-GSP)组织的,从2024年7月4日至2010年4月4日至14/04/2024。 01245.001973/2024-31。Roberto Dantas de Pinho,科学,技术与创新部C&T分析师 - 政策和计划的MCTI秘书处 - 作为成员参加“海洋十年会议”,并支持Barcelona/spain ins Spain/spain inspain/spain inspain ins of Barcelona/spain inserny cromigant的组织和卫星事件。根据MCTI负担,根据案例01245.001953/2024-61。Andrea Cancuta Da Cruz,海洋科学和科学,技术与创新部的总协调员 - MCTI -MCTI,作为成员参加“海洋十年会议”,并支持Barcelona/Spain/Spain/Spain/Spain nriventry nrights in Cooring of Ocean Cite of Ocean Cite of Ocean十年周期的组织和卫星事件。根据01245.001826/2024-61的案件,MCTI负担。Leandro Bortolozo Pedron, director of the Department of Thematic Programs of the Ministry of Science, Technology and Innovation - MCTI, to participate in the "2024 Ocean Decade Conference", in Barcelona/Spain, from 04/05/2024 to 14/04/2024, transit included, with burden on MCTI, according to process No. 01245.001856/2024-78. liana liana oighenstein Anderson,国家监测与自然灾害中心的研究人员 - 塞马登(Cemaden),作为演讲者参加“欧洲地球科学联盟(EGU)的2024年大会(EGU)”的演讲者,目的是以他们的知识提高了科学互动的20/0/贡献了20/opent oft oft/oftiria oft oft oft oftiria。根据案例01242.000108/2024-06,到21/04/2024,包括流量,负担有限。Leandro Bortolozo Pedron, director of the Department of Thematic Programs of the Ministry of Science, Technology and Innovation - MCTI, to participate in the "2024 Ocean Decade Conference", in Barcelona/Spain, from 04/05/2024 to 14/04/2024, transit included, with burden on MCTI, according to process No. 01245.001856/2024-78.liana liana oighenstein Anderson,国家监测与自然灾害中心的研究人员 - 塞马登(Cemaden),作为演讲者参加“欧洲地球科学联盟(EGU)的2024年大会(EGU)”的演讲者,目的是以他们的知识提高了科学互动的20/0/贡献了20/opent oft oft/oftiria oft oft oft oftiria。根据案例01242.000108/2024-06,到21/04/2024,包括流量,负担有限。Marco Antonio Chamon,巴西航天局总裁 - AEB,参加“亚洲和太平洋地区太空科学和技术教育区域董事会会议)”,以及“拉丁美洲和加勒比海论坛的第一个中国和北北方和中国北方/瓦赫恩/瓦赫安/04/04/04/04/04/04/根据案例01350.000273/2024-22,04/28/2024,包括流量,负担有限,负担有限。东北战略技术中心主任-Cetene Giovanna Machado在高级材料,纳米技术和Grafeno的技术发展任务和创新中组成巴西代表团,访问“ Grafeno工程创新中心(Geicene Innovition Center -Geic Center -Geiction Center -Geic),以及曼彻斯特大学的材料,以及曼彻斯特大学的材料,以及曼彻斯特大学的材料,以及曼彻斯特大学,以及曼彻斯特大学的材料,以及曼彻斯特大学的材料,以及曼彻斯特的材料,以及曼彻斯特2号,以及2号材料 - 以及2号,以及2号,以及2号,以及2号,以及2号材料,以及2岁, CM2D)“来自新加坡国立大学,目的是加强与纳米技术,高级材料和石墨烯的技术先进国家的联系,曼彻斯特/英国/新加坡/新加坡/新加坡/新加坡/新加坡/新加坡/新加坡/新加坡/新加坡/新加坡/新加坡/新加坡/新加坡/新加坡/新加坡/新加坡/新加坡/新加坡/新加坡/新加坡/新加坡/新加坡/新加坡/新加坡/新加坡/新加坡/新加坡/新加坡/新加坡/新加坡/新加坡的合作。Giovanna Machado在高级材料,纳米技术和Grafeno的技术发展任务和创新中组成巴西代表团,访问“ Grafeno工程创新中心(Geicene Innovition Center -Geic Center -Geiction Center -Geic),以及曼彻斯特大学的材料,以及曼彻斯特大学的材料,以及曼彻斯特大学的材料,以及曼彻斯特大学,以及曼彻斯特大学的材料,以及曼彻斯特大学的材料,以及曼彻斯特的材料,以及曼彻斯特2号,以及2号材料 - 以及2号,以及2号,以及2号,以及2号,以及2号材料,以及2岁, CM2D)“来自新加坡国立大学,目的是加强与纳米技术,高级材料和石墨烯的技术先进国家的联系,曼彻斯特/英国/新加坡/新加坡/新加坡/新加坡/新加坡/新加坡/新加坡/新加坡/新加坡/新加坡/新加坡/新加坡/新加坡/新加坡/新加坡/新加坡/新加坡/新加坡/新加坡/新加坡/新加坡/新加坡/新加坡/新加坡/新加坡/新加坡/新加坡/新加坡/新加坡/新加坡/新加坡的合作。PEDRO MAFFIA DA SILVA参加“关于气候,土地,能源和用水综合分析的区域协调会议(CLEW)”,该会议旨在开放前一个拉丁美洲核能核能核能计划的多学科主题计划的多学科主题项目, (RLA2015/Arcal, RLA2016/Arcal and RLA2017/Arcal), promoted by the International Atomic Energy Agency (AIEA), in Montevideu/Uruguay, from 14/04/2024 to 4/20/2024, with limited burden, according to process No. 01341.001365/2024-39.