摘要:为了减少航空对环境的影响,飞机制造商开发了新型飞机配置并研究了先进的系统技术。这些新技术非常复杂,其特点是采用电力或混合电力推进系统。确保这些复杂架构的安全对于新飞机概念的认证和投入使用至关重要。系统架构中的新兴技术(例如使用基于模型的系统工程 (MBSE))有助于处理这种复杂性。但是,MBSE 技术目前尚未与使用自动化多学科设计分析和优化 (MDAO) 技术的总体飞机概念设计集成。当前的 MDAO 框架未包含系统安全评估的各个方面。业界对基于模型的安全评估 (MBSA) 越来越感兴趣,以改进安全评估过程并让安全工程师详细了解系统组件的故障特征。本文提出了一个全面的框架来介绍概念设计和 MDAO 中安全评估的各个方面,同时还考虑了系统架构和安全评估过程的下游兼容性。所提出的方法包括 SAE ARP4761 安全评估流程的特定元素,并使其适应概念设计中的系统架构流程。所提出的框架还引入了一种新颖的安全基础
智能技术系统(ITS)的开发需要高级方法,以满足不断增长的系统复杂性和各种利益相关者要求的种类。基于模型的系统工程(MBSE)已被证明是一种有前途的开发方法,可以应对不断增长的系统复杂性和提高企业敏捷性(Friedenthal 2023)。通常,系统工程(SE)致力于开发整体解决方案和集成系统组件以满足客户需求和功能(Hitchins 2007)。se首先定义系统要求,然后设计系统元素,合成和复杂系统验证(Walden 2023)。MBSE是基于文档的SE的扩展,其中有关系统的信息在系统模型中被形式化。这种以模型为中心的方法可以为跨学科系统开发所需的一致且可追溯的系统设计(Friedenthal 2023)。系统模型有助于更深入地了解系统需求与系统新兴属性,内部结构和行为之间的联系。建模使整合易于管理的不同观点的复杂性。系统模型是在研讨会中设计的,其中随后将模型数字化,或者使用建模工具直接以数字形式进行数字化(Tschirner 2016)。正式的建模语言,例如Sysml(Delligatti 2014),用于以正式的方式捕获系统设计。
本论文中介绍的工作是在瑞典林雪平大学 (LiU) 管理与工程系 (IEI) 的机械设计系进行的。我要感谢几位在工作期间给予我支持和建议的人;首先,我要感谢我的导师 Petter Krus 教授的指导和支持。这段时间最有趣和最令人鼓舞的工作是我们进行 ModuLiTH(模块化电动汽车)项目课程的时候。我要感谢我在萨博航空系统的工业赞助商和主管:Anders Pettersson 提出了启动研究项目的想法,Stefan Andersson 让我深入参与了萨博航空系统的 MBSE 计划,以及 Erik Herzog 的学术观点和在 SPEEDS 项目中一起度过的有趣时光。在林雪平大学机械设计系,我还要感谢 Olof Johansson 对 NFFP 项目的支持和合作,以及 Björn Lundén 对研究生阶段研究和学习的介绍。我要感谢几位在萨博航空系统公司和机械设计部门的 MBSE 领域进行论文、演示和讨论的愉快团队合作,其中我想提到的有:Bengt-Göran Sundqvist、Johan Ölvander、Anders Weitman、Sören Steinkellner、Hampus Gavel、Gert Johansson、Lars Karlsson、Ingela Lind 和 Ulrik Pettersson。这项工作得到了 ProViking 的资金支持
图表列表 图 1:整个系统企业的数字化工程 (Zimmerman, 2015a) ........................................................ 16 图 2:水面舰艇声纳中的电子部件报废 (Sanborn, 2013) ........................................................ 19 图 3:随时间变化的生命周期成本累计百分比 (Walden et al., 2015) ............................................................. 20 图 4:1974 年至 2005 年飞机年平均成本上涨和通货膨胀指数 (Arena et al., 2008) ............................................................................................................................................. 21 图 5:系统准备程度及退化和适应性 (Enhancing Adaptability of U.S. Military Forces, 2011) ............................................................................................................................. 22 图 6:MBE 在整个采购生命周期中的优势 (Bergenthal, 2011) .................................................. 23 图 7:系统工程 Vee 模型 (Bray, 2010) .............................................................................. 25 图 8:MBSE 优势 (McDermott et al., 2020) ........................................................................................ 25 图 9:MOSA 的目标 (Zimmerman, Ofori, et al., 2018) ................................................................ 27 图 10:数字构造 (Kritzinger et al., 2018) ...........
本论文中介绍的工作是在瑞典林雪平大学 (LiU) 管理与工程系 (IEI) 的机械设计部进行的。我要感谢几个人在工作期间给予的支持和建议;首先,我要感谢我的导师 Petter Krus 教授的指导和支持。在此期间,最有趣和最令人鼓舞的工作是我们进行 ModuLiTH(模块化电动汽车)项目课程的时候。我要感谢我在萨博航空系统的工业赞助商和主管:Anders Pettersson 提出了启动研究项目的想法,Stefan Andersson 让我深入参与了萨博航空系统的 MBSE 计划,以及 Erik Herzog 的学术观点和在 SPEEDS 项目中一起度过的有趣时光。在林雪平大学机械设计系,我还要感谢 Olof Johansson 对 NFFP 项目的支持和合作,以及 Björn Lundén 对研究生阶段研究和学习的介绍。在萨博航空系统公司和机械设计部门的 MBSE 领域,我与几位同事在论文、演讲和讨论方面进行了愉快的合作,在此我要感谢他们:Bengt-Göran Sundqvist、Johan Ölvander、Anders Weitman、Sören Steinkellner、Hampus Gavel、Gert Johansson、Lars Karlsson、Ingela Lind 和 Ulrik Pettersson。这项工作得到了 ProViking 研究计划(与瑞典战略研究基金会有关)、NFFP(国家航空工程研究计划)和萨博研究委员会的资金支持。林雪平,马赫 2009 亨利克·安德森
自适应巡航控制 (ACC) 遵循自动驾驶汽车的工业和安全标准,是现代车辆中广泛使用的高级驾驶辅助系统 (ADAS) 功能。ACC 目前可根据驾驶员的期望速度值来控制速度。本研究介绍了一项重大进步:智能自适应巡航控制 (IACC) 功能,同时开发了一种控制系统架构,通过将其集成到自动驾驶汽车中,该架构有望在科学、经济和社会层面做出显著贡献。该设计融合了交通标志和限速识别 (TSLR)、ADAS 功能和全球定位系统 (GPS) 数据等关键元素,主要通过这些支持功能增强驾驶员安全性。主要重点是设计一个可容纳这些新功能以确保安全驾驶的系统架构。IACC 系统架构的创建采用基于模型的系统工程 (MBSE) 的方法。通过这种 MBSE 方法,我们制作了系统级图表,并系统地解决了安全问题。我们设计了几种方案来评估贡献,随后进行了测试和分析。该架构特别强调 IACC 的安全方面。利用 TSLR 功能,系统可以解读交通标志并从外部来源获取限速数据,防止车辆速度超过规定限速。将设定速度值与限速进行比较,确保遵守安全参数。在这种情况下,系统利用 GPS 数据识别前方车辆,增强了在蜿蜒道路上的驾驶员支持。与其他自适应巡航控制概念相比,这种方法显著提高了 IACC 功能的可靠性,尤其是在安全灵敏度方面。
本论文中介绍的工作是在瑞典林雪平大学 (LiU) 管理与工程系 (IEI) 的机械设计系进行的。我要感谢几位在工作期间给予我支持和建议的人;首先,我要感谢我的导师 Petter Krus 教授的指导和支持。这段时间最有趣和最令人鼓舞的工作是我们进行 ModuLiTH(模块化电动汽车)项目课程的时候。我要感谢我在萨博航空系统的工业赞助商和主管:Anders Pettersson 提出了启动研究项目的想法,Stefan Andersson 让我深入参与了萨博航空系统的 MBSE 计划,以及 Erik Herzog 的学术观点和在 SPEEDS 项目中一起度过的有趣时光。在林雪平大学机械设计系,我还要感谢 Olof Johansson 对 NFFP 项目的支持和合作,以及 Björn Lundén 对研究生阶段研究和学习的介绍。我要感谢萨博航空系统公司和机械设计部门 MBSE 领域中令人愉快的团队合作,包括论文、演讲和讨论,其中我想提到的有:Bengt-Göran Sundqvist、Johan Ölvander、Anders Weitman、Sören Steinkellner、Hampus Gavel、Gert Johansson、Lars Karlsson、Ingela Lind 和 Ulrik Pettersson。这项工作得到了 ProViking 研究计划(与瑞典战略研究基金会有关)、NFFP(国家航空工程研究计划)和萨博研究委员会的资助。林雪平,2009 年 3 月 Henric Andersson
本论文中介绍的工作是在瑞典林雪平大学 (LiU) 管理与工程系 (IEI) 的机械设计系进行的。我要感谢几位在工作期间给予我支持和建议的人;首先,我要感谢我的导师 Petter Krus 教授的指导和支持。这段时间最有趣和最令人鼓舞的工作是我们进行 ModuLiTH(模块化电动汽车)项目课程的时候。我要感谢我在萨博航空系统的工业赞助商和主管:Anders Pettersson 提出了启动研究项目的想法,Stefan Andersson 让我深入参与了萨博航空系统的 MBSE 计划,以及 Erik Herzog 的学术观点和在 SPEEDS 项目中一起度过的有趣时光。在林雪平大学机械设计系,我还要感谢 Olof Johansson 对 NFFP 项目的支持和合作,以及 Björn Lundén 对研究生阶段研究和学习的介绍。我要感谢萨博航空系统公司和机械设计部门 MBSE 领域中令人愉快的团队合作,包括论文、演讲和讨论,其中我想提到的有:Bengt-Göran Sundqvist、Johan Ölvander、Anders Weitman、Sören Steinkellner、Hampus Gavel、Gert Johansson、Lars Karlsson、Ingela Lind 和 Ulrik Pettersson。这项工作得到了 ProViking 研究计划(与瑞典战略研究基金会有关)、NFFP(国家航空工程研究计划)和萨博研究委员会的资助。林雪平,2009 年 3 月 Henric Andersson
本论文中介绍的工作是在瑞典林雪平大学 (LiU) 管理与工程系 (IEI) 的机械设计系进行的。我要感谢几位在工作期间给予我支持和建议的人;首先,我要感谢我的导师 Petter Krus 教授的指导和支持。这段时间最有趣和最令人鼓舞的工作是我们进行 ModuLiTH(模块化电动汽车)项目课程的时候。我要感谢我在萨博航空系统的工业赞助商和主管:Anders Pettersson 提出了启动研究项目的想法,Stefan Andersson 让我深入参与了萨博航空系统的 MBSE 计划,以及 Erik Herzog 的学术观点和在 SPEEDS 项目中一起度过的有趣时光。在林雪平大学机械设计系,我还要感谢 Olof Johansson 对 NFFP 项目的支持和合作,以及 Björn Lundén 对研究生阶段研究和学习的介绍。我要感谢萨博航空系统公司和机械设计部门 MBSE 领域中令人愉快的团队合作,包括论文、演讲和讨论,其中我想提到的有:Bengt-Göran Sundqvist、Johan Ölvander、Anders Weitman、Sören Steinkellner、Hampus Gavel、Gert Johansson、Lars Karlsson、Ingela Lind 和 Ulrik Pettersson。这项工作得到了 ProViking 研究计划(与瑞典战略研究基金会有关)、NFFP(国家航空工程研究计划)和萨博研究委员会的资助。林雪平,2009 年 3 月 Henric Andersson
可能令人惊讶的是,MSBE 并不强制要求任何特定的系统开发生命周期。MBSE 也没有说明需要对系统的哪些方面进行建模。开发团队应决定这些事项和模型的目的(例如需求捕获/系统设计/文档/所有这些?)以及如何开发模型。对于案例研究,遵循了 NPL 的软件开发程序 [15]。该程序为模型提供了一个很好的模板。图 2 说明了 [15] 中指定的迭代开发生命周期如何映射到使用 SysML 开发的模型示例。
