乳腺癌是一种复杂的异质疾病,具有独特的分子亚型,它限制了每个亚型的优化治疗策略的发展。癌症基因疗法和晚期/难治性癌症的潜在疗法可能有望成为乳腺癌。结合了肿瘤 - 循环脂质纳米颗粒(LNP)和诱导的caspase-9(IC9)mRNA,我们旨在制定一种新型的治疗策略,以解决难治性乳腺癌。LNP的抗肿瘤作用:MDA-MB231,SKBR3和MCF-7。肿瘤细胞。通过逆转录酶定量PCR评估了与凋亡相关的基因。lnps可以有效地将包裹的GFP mRNA传递给所有三种癌细胞系(> 80%GFP表达。在目标细胞中)。此外,用IC9 mRNA(IC9-LNP)和CID封装的LNP在体外对所有癌细胞系显示了细胞毒性活性。有趣的是,在癌细胞系中,对IC9基因疗法的敏感性是良好的。IC9-LNP具有CID诱导的对SKBR3和MDA-MB231细胞的有效细胞毒性作用,但仅对MCF7细胞产生轻度的细胞毒性作用。量化相关基因的定量表明,高BAX/BCL-2比率可能与IC9-LNPÞCID易感性有关。 因此,使用IC9-LNP和CID的癌症基因治疗可能是治疗乳腺癌的有希望的替代方法,尤其是对于侵略性乳腺癌而言。 ©2022 Elsevier Inc.保留所有权利。量化相关基因的定量表明,高BAX/BCL-2比率可能与IC9-LNPÞCID易感性有关。因此,使用IC9-LNP和CID的癌症基因治疗可能是治疗乳腺癌的有希望的替代方法,尤其是对于侵略性乳腺癌而言。©2022 Elsevier Inc.保留所有权利。
摘要:糖尿病是一种繁重的疾病,通过改变葡萄糖代谢来影响各种细胞功能。几份报告已将糖尿病与癌症的发展联系起来。但是,尚不完全了解与糖尿病相关性状如何促进癌症进展的确切分子机制。当前的研究旨在探索高血糖与高胰岛素血症对乳腺癌细胞进展的潜在作用的分子机制。为此,使用微阵列基因表达测定法分析了MCF7乳腺癌细胞暴露于高血糖(HG)或高血糖和高胰岛素血症(HGI)的组合引起的基因失调。高血糖结合高胰岛素血症诱导的45个基因的差异表达(大于或等于两倍),这些基因并未由其他治疗方法共享。另一方面,在使用公开可用的数据集(GEO:GSE150586)进行的计算机分析中,与乳腺癌患者相比,乳腺癌乳腺癌患者的乳腺癌患者的15个基因在乳腺癌患者的15个基因中的差异上调。SLC26A11,ALDH1A3,MED20,PABPC4和SCP2都是微阵列数据中的最佳上调基因之一。总而言之,高血糖与高胰岛素血症相结合引起了可能独特的特征,有助于获得更多的致癌性状。的确,这些发现可能会增加强调与糖尿病相关的代谢改变作为糖尿病治疗的辅助性如何在改善乳腺癌结果中重要的。然而,在这项研究中,需要进一步的详细研究来破译突出的基因在不同血糖指数患者的乳腺癌发病机理中的作用。
抽象目的:染色体不稳定性(CIN)是癌症的标志,其特征是染色体的细胞对细胞变异性,在癌细胞群体中经常观察到,并且与预后不良,转移和治疗耐药性不佳有关。乳腺癌(BC)的特征是不稳定的核型,最近的报道表明CIN可能会影响BC对化疗方案的反应。然而,已经观察到极端CIN与改善结果之间的矛盾关联。Methods: This study aimed to 1) evaluate CIN levels and clonal heterogeneity (CH) in MCF7, ZR-751, MDA-MB468, BT474, and KPL4 BC cells treated with low doses of tamoxifen (TAM), docetaxel (DOC), doxorubicin (DOX), Herceptin (HT), and combined treatments (TAM/DOC,通过使用荧光原位杂交(FISH),TAM/DOX,TAM/HT,HT/DOC和HT/DOX)通过将鱼类的结果与细胞增殖进行比较,检查与治疗的响应相关性。结果:根据三个特征,中间CIN与药物敏感性有关:雌激素受体α(ERα)和HER2状态,癌细胞中的CIN水平以及治疗诱导的CIN。ERα +/HER2-具有中间CIN的细胞对紫杉烷(DOC)和蒽环类动物(DOX)的治疗敏感,而ERα - /HER2-,ERα +/HER2 +,ERα +/HER2 +,ERα-/HER2 +细胞具有中间型的抗性。结论:对BC中CIN和CH的更深入的了解可以帮助优化现有的治疗方案和/或支持改善癌症结局的新策略。关键词乳腺癌;染色体不稳定性;耐药性;鱼;克隆异质性
目标:本研究对三维(3D)培养方法在富集和分离乳腺癌干细胞(BCSC)中的功效进行了比较分析。该研究比较了在母质和悬浮液中生长的多细胞球体与常用的二维(2D)单层培养方法。方法:实验涉及9天3D多细胞球体培养物,然后使用两种乳腺癌细胞系进行24小时单层培养,即MCF7和MDA-MB-231。为了评估BCSC,该研究评估了包括CD44/CD24,Vimentin和Aldh1在内的各种表面标记的表达,以及多能干细胞基因(如SOX2,OCT4,KLF4和Nanog)。另外,测量了阿霉素的耐药性和从每种方法中得出的单个细胞的能力,以在无血清悬浮培养中形成球体。结果:研究结果表明,在悬浮液中生长的3D培养多细胞球体显示出干细胞标记物和阿霉素耐药性的显着增加。此外,这些球体在无血清培养基中形成具有超过50 µm的单细胞球体具有更高的能力。结论:总的来说,与2D单层和3D单基质甲基甲基甲基甲基甲基甲基甲基酯和3D Matrigel Meths相比,这种3D培养方法在悬浮液中具有增强的BCSC,具有增强的自我更新和增殖能力。因此,这种方法可以使用任何可用的BCSC隔离方法从细胞系中隔离BCSC的关键初步步骤。关键词:乳腺癌,抗癌性,癌症干细胞,阿霉素,3D培养
使用酵母作为模型系统来表征硝化应激反应,增加了证据的数量,这表明反应性氮物种(RNSS)和一氧化氮(NO)本身会影响细胞的氧化还原状态,例如氧化应激和修饰细胞蛋白,可逆地或不可逆地修饰细胞蛋白。酵母是研究细胞中反应性氮种的作用的出色模型系统。目前,我们正在研究BZIP转录因子ATF1和PCR1在硝化应激中的作用。研究亚硝化应激对酿酒酵母的线粒体呼吸链超复合物的影响表征NO和RNS对细胞死亡机制的影响NO和RNS对慢性骨髓骨髓性K562细胞系和MCF7细胞中的NO和RN对细胞死亡机制的作用。分泌植物学真菌巨摩托菌的分类分析在固态培养中生长。,我们开发了一种生物处理方法,用于使用巨型球虫中的固体发酵生产内糖酸酶和木烷酶。研究弧菌霍乱中的硝化应力反应机制。9。研究指南:注册博士学位主管,部门加尔各答大学生物化学,2001年3月。授予博士学位的研究人员人数学位:追求M.Phil./博士学位的十八(18)个研究人员人数:第四(4)届:1)Chirandeep Dey,B.Sc。&M.Sc.在动物学中,UGC-NET SRF 2)Ayantika Sengupta,学士学位&M.Sc.在动物学中,CSIR-NET SRF 3)SANCHITA BISWAS,B.SC。动物学和硕士在生物化学中,CSIR-NET SRF 4)SHUDDHASATTWA SAMADDAR,B.SC。微生物学和硕士学位 在生物化学中,DBT-SRF 5)Sourav Mukherjee,硕士 生物技术,项目实习生前博士学生:1)Rajib Sengupta博士,学士学位 化学硕士 生物化学博士学位在2007年颁发的奖学博士研究生授予,在匹兹堡大学外科Detcho A. Stoyanovsky教授的监督下,匹兹堡大学后研究员,在Karolinska Institutet的Karolinska Institutet的Biiochemist和Biophysics教授Arne Holmgren教授的监督下微生物学和硕士学位在生物化学中,DBT-SRF 5)Sourav Mukherjee,硕士生物技术,项目实习生前博士学生:1)Rajib Sengupta博士,学士学位 化学硕士 生物化学博士学位在2007年颁发的奖学博士研究生授予,在匹兹堡大学外科Detcho A. Stoyanovsky教授的监督下,匹兹堡大学后研究员,在Karolinska Institutet的Karolinska Institutet的Biiochemist和Biophysics教授Arne Holmgren教授的监督下生物技术,项目实习生前博士学生:1)Rajib Sengupta博士,学士学位化学硕士 生物化学博士学位在2007年颁发的奖学博士研究生授予,在匹兹堡大学外科Detcho A. Stoyanovsky教授的监督下,匹兹堡大学后研究员,在Karolinska Institutet的Karolinska Institutet的Biiochemist和Biophysics教授Arne Holmgren教授的监督下化学硕士生物化学博士学位在2007年颁发的奖学博士研究生授予,在匹兹堡大学外科Detcho A. Stoyanovsky教授的监督下,匹兹堡大学后研究员,在Karolinska Institutet的Karolinska Institutet的Biiochemist和Biophysics教授Arne Holmgren教授的监督下
滋养层细胞表面抗原 2 ( TROP2 ) 又称肿瘤相关钙信号转导子 2 ( TACSTD2 ),是一种细胞表面糖蛋白,可作为细胞内 (IC) 钙信号的跨膜转导子。它在许多正常组织中表达,但在多种肿瘤中过表达,例如胰腺癌 (1)、卵巢癌 (2)、前列腺癌 (3) 和乳腺癌 (4)。TROP2 在肿瘤细胞增殖、凋亡和侵袭中起重要作用,从而影响癌症患者的预后和治疗 (2)。表面 TROP2 表达与乳腺癌和前列腺癌中的 E-钙粘蛋白表达呈正相关,与间充质基因特征呈负相关,表明它与上皮表型相关 (5)。TROP2 促进癌细胞迁移和侵袭的能力在几种类型的肿瘤中有所描述 (2)。TROP2 在调节增殖中的作用是一种复杂且特定于细胞类型的现象。 TROP2 刺激人类宫颈癌细胞和膀胱癌细胞的增殖和细胞生长,而据报道,胆管癌 (CHOL) 和 MCF7 乳腺癌细胞系也具有抑制细胞增殖的能力 (6,7)。此外,TROP2 似乎在调节癌细胞存活和耐药性方面具有双重功能。宫颈癌细胞系中 TROP2 的下调会增加卵巢癌和膀胱癌细胞的凋亡 (8,9)。与这些发现相反,过表达 TROP2 的宫颈癌细胞对顺铂诱导的凋亡更敏感,而沉默表达 TROP2 的细胞则更具抵抗力 (10)。TROP2 通过不同的途径向细胞发出信号,并由多个分子的复杂网络进行转录调控 (11)。由于 TROP2 在许多癌症的转移和进展中起着关键作用,因此针对 TROP2 的药物具有作为晚期癌症疗法的潜力 (12)。本研究基于医学数据库中的文献,全面回顾了有关TROP2在肿瘤发生中的作用以及TROP2作为晚期癌症的生物标志物和新兴治疗靶点的良好潜力的相关研究。我们根据叙述性综述报告清单(可参见https://atm.amegroups.com/article/view/10.21037/atm-22-5976/rc)撰写了以下文章。
目的:应用于癌症治疗的纳米技术是纳米医学研究的一个越来越多的研究领域,具有磁性纳米粒子介导的抗癌药物输送系统,提供了最小可能的副作用。到此,使用无标记的共聚焦拉曼光谱研究了商业钴金属纳米颗粒的结构和化学性质。材料和方法:通过XRD和TEM研究了钴纳米颗粒的晶体结构和形态。用鱿鱼和PPM研究了磁性特性。共聚焦拉曼显微镜具有高空间分辨率和组成灵敏度。它是一种无标记的工具,可在细胞内追踪纳米颗粒,并研究无涂层的钴金属纳米颗粒与癌细胞之间的相互作用。通过MTT测定法评估了钴纳米颗粒对人类细胞的毒性。结果:MCF7和HCT116癌细胞和DPSC间充质干细胞的超paragnetic CO金属纳米颗粒摄取通过共聚焦拉曼显微镜研究。拉曼纳米颗粒特征还可以准确检测细胞内的纳米颗粒而无需标记。观察到钴纳米颗粒的快速吸收,然后观察到快速凋亡。通过针对人类胚胎肾脏(HEK)细胞的MTT测定法评估其低细胞毒性,使它们成为有望发展目标疗法的候选者。结论:无标签的共聚焦拉曼光谱可以准确地将CO金属纳米颗粒定位在细胞环境中。此外,在20MW的激光照射下,波长为532nm,可以使局部加热导致细胞内钴金属纳米颗粒的燃烧,从而为癌症光疗法开放新的途径。研究了无表面活性剂钴金属纳米颗粒与癌细胞之间的相互作用。癌细胞中易于的内吞作用表明,这些纳米颗粒在产生其凋亡方面具有潜力。这项初步研究证明了钴纳米材料在纳米医学中应用的可行性和相关性,例如光疗,高温或干细胞递送。关键字:拉曼光谱,钴纳米颗粒,癌细胞,干细胞,细胞摄取,凋亡,无标签工具
目的:应用于癌症治疗的纳米技术是纳米医学研究的一个越来越多的研究领域,具有磁性纳米粒子介导的抗癌药物输送系统,提供了最小可能的副作用。到此,使用无标记的共聚焦拉曼光谱研究了商业钴金属纳米颗粒的结构和化学性质。材料和方法:通过XRD和TEM研究了钴纳米颗粒的晶体结构和形态。用鱿鱼和PPM研究了磁性特性。共聚焦拉曼显微镜具有高空间分辨率和组成灵敏度。它是一种无标记的工具,可在细胞内追踪纳米颗粒,并研究无涂层的钴金属纳米颗粒与癌细胞之间的相互作用。通过MTT测定法评估了钴纳米颗粒对人类细胞的毒性。结果:MCF7和HCT116癌细胞和DPSC间充质干细胞的超paragnetic CO金属纳米颗粒摄取通过共聚焦拉曼显微镜研究。拉曼纳米颗粒特征还可以准确检测细胞内的纳米颗粒而无需标记。观察到钴纳米颗粒的快速吸收,然后观察到快速凋亡。通过针对人类胚胎肾脏(HEK)细胞的MTT测定法评估其低细胞毒性,使它们成为有望发展目标疗法的候选者。结论:无标签的共聚焦拉曼光谱可以准确地将CO金属纳米颗粒定位在细胞环境中。此外,在20MW的激光照射下,波长为532nm,可以使局部加热导致细胞内钴金属纳米颗粒的燃烧,从而为癌症光疗法开放新的途径。研究了无表面活性剂钴金属纳米颗粒与癌细胞之间的相互作用。癌细胞中易于的内吞作用表明,这些纳米颗粒在产生其凋亡方面具有潜力。这项初步研究证明了钴纳米材料在纳米医学中应用的可行性和相关性,例如光疗,高温或干细胞递送。关键字:拉曼光谱,钴纳米颗粒,癌细胞,干细胞,细胞摄取,凋亡,无标签工具
抽象背景有雌激素受体(ER)+,孕酮受体(PR)+和HER2+乳腺癌的高效治疗策略。但是,对于被诊断为三阴性乳腺癌的妇女中的10% - 15%的靶向治疗策略有限。在这里,我们假设靶向药物的ER会诱导表型变化,以使乳腺肿瘤细胞对免疫介导的杀戮敏感,无论其ER状态如何。进行了实时细胞分析,流式细胞仪,QRT-PCR,蛋白质印迹和多重RNA分析,以表征ER+和ER-乳腺癌细胞,并询问ER靶向药物的表型效应。通过他莫昔芬代谢产物4-羟基莫昔芬(4-OHT)和输卵剂的乳腺癌细胞对免疫细胞杀死的敏感性,是通过体外健康抑制天然杀伤细胞111释放内杀死测定方法来确定的。进行了一项合成性肿瘤研究,以在体内验证这些发现。用他莫昔芬代谢产物4- OHT或Fulvestrant进行预处理的结果导致ER+和ER-乳腺癌细胞的自然杀伤(NK)介导的细胞裂解增加。通过4-OHT处理的ER+和ER-细胞的多重RNA分析分析,我们确定了凋亡和死亡受体信号传导途径的激活增加,并确定了G蛋白偶联受体的雌激素(GPR30)参与度是一种假定的机制,是一种用于免疫开发的机制。使用特定的GPR30激动剂G-1,我们证明了靶向GPR30信号传导的靶向激活导致NK细胞杀死增加。此外,我们表明GPR30的敲低抑制了4-OHT和拟驱动介导的NK细胞杀伤的增加,这表明这取决于GPR30的表达。此外,我们证明了这种机制在4-OHT耐药的MCF7细胞系中保持活跃,表明即使在具有抗ER+肿瘤的患者群体中,对他莫昔芬的细胞毒性作用有抗性,4-OHT治疗也会使它们敏感它们对免疫介导的杀害。此外,我们发现肿瘤细胞的过饱和预处理与IL-15超级飞机N-803治疗NK细胞的处理协同,并使肿瘤细胞敏感到靶向高亲和力天然杀伤剂(T-Hank)细胞的编程死亡凸起1(PD-L1)。最后,我们证明了荧光动物和N-803的组合有效地在体内三阴性乳腺癌。
