可再生能源在能源系统中的份额不断增加,需要储能技术来处理间歇性能源和变化的能源消耗。液态空气储能 (LAES) 是一种很有前途的技术,因为它具有高能量密度并且不受地理限制。通过在 LAES 中使用热能和冷能回收循环可以获得相对较高的往返效率 (RTE)。在本文中,针对独立 LAES 系统优化并比较了与不同冷能回收循环相关的七种案例。首次考虑使用多组分流体循环 (MCFC) 和有机朗肯循环 (ORC) 作为 LAES 中的冷回收循环。最优结果表明,具有双 MCFC 的 LAES 系统性能最佳,RTE 为 62.4%。通过将高温热交换器的最小温差从 10 C 降低到 5 C,可将此 RTE 进一步提高到 64.7%。优化结果还表明,冷能回收系统中使用的 ORC 不产生任何功,只发生工作流体的相变,因此不应使用它们。最后,应用能量传递效率来测量充电和放电过程的热力学性能。© 2021 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。
目前正在开发多种类型的能源技术,重点关注能源安全和可持续性问题。在这些不同的技术中,燃料电池微电网系统是解决能源匮乏的孤立和岛屿社区(尤其是菲律宾等群岛国家)的合适解决方案。燃料电池技术的选择多种多样,它们之间的弱点、优势和特点相互冲突,这使得选择变得困难。本研究采用称为 VIKOR(Vise Kriterijumska Optimizacija Kompromisno Resenje)的多标准决策方法,作为一种系统方法,对微电网分布式系统中固定电源应用的不同燃料电池技术进行排名。竞争技术的运行特性基于技术和经济指标进行评估——能源效率(%)、寿命(小时)、功率密度(kW/m 3 )、比功率(W/kg)和成本($/kW)。不同指标的数据来自文献中可用的研究,并利用 VIKOR 算法进行评估。结果表明,聚合物电解质膜燃料电池 (PEMFC) 是最合适的燃料电池技术,评估指数 Q = 0。不同燃料电池技术的排名如下:PEMFC > PAFC > SOFC > MCFC > AFC > DMFC。PEMFC 具有高比功率、高功率密度和紧凑设计等优点。本研究结果表明,VIKOR 可用于评估各种技术和经济指标。这种方法可以指导决策者为偏远社区的微电网电力系统选择最佳的燃料电池技术。