获取独家产品信息,尽享促销优惠!立即订阅,不容错过
* 限···时··优惠
解决运动想象分类问题一直是脑信息学领域的难题。由于计算能力和算法可用性无法满足复杂的脑信号分析,准确度和效率是过去几十年运动想象分析的主要障碍。近年来,机器学习(ML)方法的快速发展使人们能够用更有效的方法来解决运动想象分类问题。在各种ML方法中,图神经网络(GNN)方法在处理相互关联的复杂网络方面显示出了其效率和准确性。GNN的使用为从大脑结构连接中提取特征提供了新的可能性。在本文中,我们提出了一种名为MCGNet +的新模型,它提高了我们之前的模型MutualGraphNet的性能。在这个最新的模型中,输入列的互信息形成了列间余弦相似度计算的初始邻接矩阵,从而在每次迭代中生成一个新的邻接矩阵。动态邻接矩阵与时空图卷积网络(ST-GCN)相结合,比不变矩阵模型具有更好的性能。实验结果表明,MCGNet+具有足够的鲁棒性来学习可解释的特征,并且优于目前最先进的方法。