DNA 甲基化是调节生物体基因表达的重要因素。然而,DNA 甲基化是否在适应性进化中发挥关键作用尚不清楚。本文,我们展示了拟南芥中自然选择的 DNA 甲基化的证据。与单核苷酸多态性相比,三种类型的甲基化——甲基化 CG (mCG)、mCHG 和 mCHH——对拟南芥种群中基因表达水平的变化贡献很大。这些表达不稳定的基因在很大程度上影响了特化代谢量的巨大变化。在这三种类型的甲基化中,只有位于与特化代谢物相关的基因启动子区域的 mCG 在拟南芥种群中显示出选择性清除特征。因此,自然选择的 mCG 似乎是导致植物进化过程中与特化代谢物相关的表达多样性的关键突变。
自 1974 年以来,我们一直与太空 OEM 密切合作,开发了定制测试台,为卫星和发射器制造商提供专用解决方案,以进行关键的地面测试。我们为卫星中继器测试提供尖端解决方案,这要归功于其多载波发生器系统 (MCGS),该系统在过去 20 年中已被全球许多卫星 OEM 使用。这种独特的解决方案结合了高精度测试和灵活性,并具有用户友好的配置。Exens Solutions 制造的其他测试台包括发射器轨迹测试台、开关矩阵、组合器……
摘要阿尔茨海默氏病(AD)影响了全球超过5500万人,但关键的遗传贡献者仍然没有尚未确定。利用基因组元素模型的最新进展,我们提出了创新的反向基因发现技术,这是一种神经网络结构中一种突破性的神经元到基因的回溯方法,以阐明新型的因果关系遗传生物标志物推动了AD套装。逆向基因 - 包括三个关键创新。首先,我们利用这样的观察结果,即引起AD的概率最高的基因(定义为最有因果基因(MCG))必须具有激活那些引起AD的最高可能性的神经元的最高可能性,该神经元被引起AD的可能性最高,被罚款为最大的神经元(MCNS)。其次,我们在输入层处取代基因令牌表示,以允许每个基因(已知或新颖的AD)表示为输入空间中的疾病和独特的实体。最后,与现有的神经网络体系结构相反,该架构以馈送方式跟踪从输入层到输出层的神经激活,我们开发了一种创新的回溯方法,可以跟踪从MCNS到输入层的向后进行识别,从而识别最引起的代币(MCTS)和Corre-McGs。逆向基因 - 高度解释性,可推广和适应性,为在其他疾病情景中应用提供了有希望的方法。