AZD3965介导的Raji B细胞淋巴瘤细胞中MCT1的抑制作用(MCT4- /MCT1+)增加了肿瘤中树突状细胞(DC)和天然杀伤(NK)细胞的丰度。这些细胞上调了PD-L1,进一步表明MCT1与免疫调节剂的组合值得在诊所进行测试。
摘要 口服抗糖尿病药二甲双胍已被证实在各种癌细胞系中具有抗肿瘤活性,与线粒体复合物 I 的抑制有关。然而,临床前研究一直难以证明这种抗肿瘤活性,其利用的二甲双胍浓度与标准抗糖尿病剂量可达到。研究表明,二甲双胍与抗高血压药物昔洛舍平联合使用,通过抑制单羧酸转运蛋白 (MCT)1/MCT4,可降低二甲双胍的治疗阈值并使癌细胞对杀伤敏感。这些药物之间的强相互作用可引起对转化细胞特有的合成致死性。这项初步研究旨在通过测量 PC3(粘附)和 THP-1(悬浮)癌细胞系中的细胞活力和细胞外乳酸来研究二甲双胍的抗肿瘤作用及其与昔洛舍平的协同关系。总体而言,PC3 细胞系对二甲双胍和昔罗舍平联合治疗或单独使用其中一种药物的治疗反应更好;然而,在两种细胞系中均未观察到合成致死。在两种细胞系中,二甲双胍和昔罗舍平之间的相互作用在细胞活力测定中并不具有统计学意义(p>0.05)。通过测量细胞外乳酸对 MCT1/MCT4 抑制的分析并不具有统计学意义(p>0.05),并且结果尚无定论。此外,在某些治疗组中,细胞系的性质(粘附或悬浮)具有统计学意义(p<0.05),这表明这可能在药物治疗的疗效中发挥作用。需要进一步研究以更好地了解二甲双胍和昔罗舍平合成致死以及昔罗舍平 MCT1/MCT4 抑制的潜在细胞机制。未来的研究应侧重于实现能够在体内表现出抗肿瘤作用的二甲双胍剂量。关键词:二甲双胍、昔罗舍平、THP-1、PC3、单羧酸转运蛋白、MCT1、MCT4、粘附细胞系、悬浮细胞系、前列腺癌、急性髓细胞白血病、抗肿瘤、合成致死。
图 2. 不同炎症严重程度的 UC 患者组织活检中转运蛋白的表达,以内镜 Mayo 评分表示(Mayo 1:轻度炎症,Mayo 2:中度炎症,Mayo 3:重度炎症)。(A)MRP4、(B)P-gp、(C)MCT1 和(D)OATP2B1。单个数据点代表每位患者的直肠和乙状结肠活检平均值;实线代表所有患者的中位数。低于 LOD 或 LOQ 的表达水平被分配一个任意值(分别为 LOD/√2(虚线绿线 ---)或 LOQ/√2(虚线蓝线 ·-·),以允许进行统计检验。
方法:八匹杂交马在跑步机上进行了标准化的运动测试,以确定与乳酸阈值相对应的速度。该速度用于规定急性强烈运动(AIEB)的外部载荷,该速度是为了募集迅速疲劳的II型肌肉纤维,并诱导高乳酸血症和代谢性酸中毒。在跨界设计中,将马匹分配到三个实验组,并以7天的冲洗期分配。跑步机组(TG)通过低强度跑步机行走积极恢复。WBV组(WBVG)遵循VP上的逐步恢复协议,每个步骤持续2分钟,频率在特定顺序下降低:76、66、55、46和32 Hz。假手术组(SG)被指定为副总裁旋转的马匹。所有小组的恢复策略持续时间为10分钟。心率(HR),直肠温度(RT),乳酸血症,糖含量,酸碱状态和电解质,强离子差(SID)和肌肉单羧酸盐转运蛋白(MCT1和MCT4)。
儿童大部分药物为口服给药,但各年龄段儿童小肠药物代谢酶(DME)和药物转运体(DT)的蛋白质丰度信息仍不明确,这阻碍了儿童精准用药。为了探索 DME 和 DT 的年龄相关差异,收集了儿童和成人空肠和回肠手术剩余的肠组织,并通过靶向定量蛋白质组学分析了顶端钠 - 胆汁酸转运蛋白、乳腺癌耐药蛋白(BCRP)、单羧酸转运蛋白 1(MCT1)、多药耐药蛋白 1(MDR1)、多药耐药相关蛋白(MRP)2、MRP3、有机阴离子转运多肽 2B1、有机阳离子转运蛋白 1、肽转运蛋白 1(PEPT1)、CYP2C19、CYP3A4、CYP3A5、UDP 葡萄糖醛酸转移酶(UGT)1A1、UGT1A10 和 UGT2B7。分析了 58 名儿童(48 条回肠、10 条空肠,年龄范围:8 周至 17 岁)和 16 名成人(8 条回肠、8 条空肠)的样本。比较年龄组时,成人回肠中的 BCRP、MDR1、PEPT1 和 UGT1A1 丰度明显高于儿童回肠。空肠 BCRP、MRP2、UGT1A1 和 CYP3A4 丰度在
Glut1 缺乏综合症 - 科学和临床概述 Jörg Klepper 教授 1991 年,De Vivo 博士描述了第一位 Glut1 患者,他们找到了一种使用生酮饮食来诊断和治疗患者的方法。从那时起,关于这种转运蛋白和这种疾病的信息量取得了重大进展。这种疾病的症状比最初想象的要复杂得多,不仅 SLC2A1 基因突变会导致这种疾病,而且还有更多的治疗方法可以帮助我们的患者。2020 年发表了第一份共识论文,这对我们的社区来说是一个重要的里程碑。它帮助我们思考其他患者群体的护理和治疗,这些患者从未被认为患有 Glut1DS,例如成人和孕妇。下图由 Klepper 博士提供,总结了能量如何进入大脑:葡萄糖(红色圆圈)通过位于血脑屏障 (BBB) 的脑内皮细胞中的 Glut1 转运蛋白从血液进入大脑。当葡萄糖缺失或 Glut1 缺失时(例如在 Glut1DS 中),其他转运蛋白(例如 MCT1)可以运输为大脑提供能量的分子,例如酮(紫色圆圈)。然后,另一方面,葡萄糖或葡萄糖代谢产物或酮将为神经元提供能量。大脑中还有其他转运蛋白,例如氨基酸 (AA) 转运蛋白。
