临床上,多药耐药(MDR)从根本上影响着肿瘤治疗的预后,这主要是由于膜上通道介导的药物效应增强,从而减少了药物在肿瘤细胞中的积累。如何恢复肿瘤细胞对化疗的敏感性是一个持续而紧迫的临床问题。一种普遍的观点是,肿瘤细胞由于缺氧而转向糖酵解来提供能量。然而,研究表明,线粒体也起着至关重要的作用,例如通过三羧酸(TCA)循环为生物合成提供中间体,并通过氧化磷酸化(OXPHOS)完全分解有机物为细胞提供大量的ATP。在一些肿瘤中发现了高OXPHOS,特别是在癌症干细胞(CSC)中,它们的线粒体质量增加,可能依赖OXPHOS来提供能量。因此,它们对线粒体代谢抑制剂很敏感。鉴于此,我们在开发药物以克服 MDR 时应考虑线粒体代谢,其中线粒体 RNA 聚合酶 (POLRMT) 将成为重点,因为它负责线粒体基因表达。抑制 POLRMT 可以从源头上破坏线粒体代谢,造成能量危机并最终消灭肿瘤细胞。此外,它可能会恢复 MDR 细胞对糖酵解的能量供应,并使其重新对常规化疗敏感。此外,我们讨论了通过靶向 POLRMT 为 MDR 癌症设计新治疗分子的原理和策略。
中等密度住宅 (MDR) 包括独栋单元住宅和相连的住宅单元,如复式住宅、三层住宅、联排别墅、小型和中型多单元建筑。MDR 区域的开发应提供最多样化的住房单元类型、形式和价格。政策 1. 典型的实施分区包括:单户住宅区 (R-1、R-1A)、单户和双户住宅区 (R-2)、一般住宅区 (R-3) 和老年住宅区 (RE)。计划开发区可用于需要更多灵活性的大型或经济适用住房开发项目。 2. MDR 区域的典型净密度应平均为每英亩 5-15 个单位,单个开发项目最多可容纳 20 个住宅单元/英亩。计划委员会可考虑将单个开发密度大于 20 DU/AC 的开发项目用于受法律限制的经济适用住房项目,或未来交通走廊沿线的开发项目。
对于医疗器械或体外诊断医疗器械,必须确保其安全性和有效性,并通过公告机构完成符合性评估,进而获得 MDR/IVDR CE 标志。然而,根据《人工智能法案》,这些试验器械和用于性能研究的器械可能被视为“投入使用”或“投放市场”,因此可能需要在测试前加贴 CE 标志。因此,MedTech Europe 建议试验器械和用于性能研究的器械遵循 MDR/IVDR 逻辑,从而免于《人工智能法案》的要求,只要这些流程尊重患者安全和基本权利(例如 GDPR 规定的权利)。
越来越高的耐多药 (MDR) 病原体水平迫使人们发现新的生物活性化合物。为此,首次从埃及 Kafr El Sheikh 的黑沙滩分离出两种放线菌菌株,即灰红链霉菌和罗氏链霉菌,该地区是几家大型养鱼场的所在地。通过表型、生化和 16S rRNA 序列协议对分离株进行了鉴定。这两种菌株都对三种严重的 MDR 病原体表现出强大的抗菌活性:枯草芽孢杆菌、肠炎沙门氏菌和铜绿假单胞菌。使用气相色谱-质谱 (GC-MS) 鉴定了分离株滤液的生物活性化合物。对于 S. griseorubens ,可检测到的抗菌化合物是己酸、2-乙基-、2-乙基己基酯、正癸烷、十六烷酸甲酯、苯乙酸、蓖麻油酸和对羟基苯甲酸乙酯,而 S. rochei 则分泌十七烷、2,6-二甲基-、苯乙酸、邻苯二甲酸二丁酯、二十八烷、二十六烷和维生素 A 醛。这些结果强烈鼓励使用这些环保分离物作为生物防治剂,以对抗攻击养鱼场的 MDR 病原体。
原理:间变性甲状腺癌 (ATC) 是一种极具侵袭性的甲状腺癌,在初次诊断时经常表现为局部晚期浸润或远处转移,因此错过了手术干预的最佳窗口。因此,全身化疗和靶向治疗对于改善 ATC 的预后至关重要。然而,ATC 对常规治疗表现出显著的耐药性,这凸显了阐明这种耐药性背后的生物学机制并确定新的治疗靶点以克服它的必要性。方法:我们对来自 ATC 样本的大量和单细胞 RNA 测序 (scRNA-seq) 数据进行了全面分析,以筛选与多药耐药 (MDR) 相关的 m 5 C 修饰相关基因。然后,我们进行了 IC 50 测定、流式细胞术,并使用了 Nsun2 敲除的自发致瘤 ATC 小鼠模型来证明 NSUN2 促进了 ATC 中的 MDR。为了研究 NSUN2 介导的耐药机制,我们生成了 NSUN2 敲除的 ATC 细胞系并进行了转录组学、蛋白质组学和 MeRIP-seq 分析。此外,还进行了 RNA 测序和可变剪接分析以确定 NSUN2 敲除后的整体变化。我们通过糖蛋白染色、变性 IP 泛素化、核质分馏和 PCR 进一步探索了 NSUN2/SRSF6/UAP1 轴的潜在机制。最后,我们在体外和体内评估了小分子 NSUN2 抑制剂与抗癌药物的协同作用。结果:我们的研究结果表明,NSUN2 表达与 ATC 中的 MDR 显着相关。 NSUN2 充当 SRSF6 mRNA 上的 m 5 C 的“写入器”,ALYREF 充当 m 5 C 的“读取器”,从而诱导选择性剪接重编程并将 UAP1 基因的剪接形式从 AGX1 重定向到 AGX2。因此,AGX2 增强了 ABC 转运蛋白的 N 连接糖基化,通过防止泛素化介导的降解来稳定它们。此外,NSUN2 抑制剂可降低 NSUN2 酶活性并减少下游靶标表达,从而为克服 ATC 中的 MDR 提供了一种新颖且有希望的治疗方法。结论:这些发现表明 NSUN2/SRSF6/UAP1 信号轴在 ATC 的 MDR 中起着至关重要的作用,并将 NSUN2 确定为 ATC 化疗和靶向治疗的协同靶点。
摘要:抗生素是当前医学治疗传染病的主食。然而,它们的广泛使用和滥用,结合细菌的高适应能力,危险地增加了多药耐药(MDR)细菌的发生率。这使得感染的治疗具有挑战性,尤其是当MDR细菌形成生物膜时。进入市场的最新抗生素与现有的抗生素具有非常相似的作用方式,因此细菌也迅速吸引了这些作用模式。因此,采取有效的措施避免致病细菌抗生素耐药性的发展非常重要,同时也要对来自不同来源的新分子进行生物培训,以扩大可用于结构这些感染性细菌的药物的库。丝状真菌具有大型且未探索的次级代谢组,并且富含生物活性分子,这些分子可能是潜在的新型抗菌药物。他们的生产可能具有挑战性,因为在标准培养条件下相关的生物合成途径可能不活跃。涉及代谢和基因工程的新技术可以帮助增强抗生素的产生。这项研究旨在回顾真菌的生物投入,以生产新药,以面对MDR细菌和生物FILM相关感染的日益增长的问题。
2020 年 10 月 10 日——Deeptree 总部位于阿拉斯加,在蒙大拿州和波多黎各设有办事处,是一家托管检测和响应 (MDR) 提供商,提供网络防御……
摘要:尽管癌症中有针对性的疗法发展了,但多药剂(MDR)的问题仍未解决。大多数转移性癌症患者死于MDR。跨膜ef泵作为MDR的主要原因,但是最突出和最长的EF泵泵P-糖蛋白(P-GP)的早期抑制剂是消除了抑制剂。这些抑制剂已被用于治疗肿瘤的P-gp表达的情况下使用。因此,在临床环境中,在各自的EF漏水泵表达的情况下,将跨膜EF泵泵的抑制剂重新考虑为有前途的策略。我们发现了由ABCC4基因编码的对称ef泵泵MRP4的新型对称抑制剂。MRP4参与了多种癌症,并且对抗癌药物有抗性。所有化合物在过表达MRP4的细胞系测定中表现出比最著名的MRP4抑制剂MK571更好的活性,并且这些活性可能与对称分子框架内的芳族残基的各种替代模式有关。最佳化合物之一被证明是在细胞系模型中克服MRP4介导的抗性,以恢复抗癌药物敏感性作为概念证明。
2019年导弹防御评论(MDR)的中心主题是将进攻力与主动和被动防御融合在一起的必要性。“如果威慑和外交失败并与流氓国家或随后的地区内发生冲突,” MDR说:“美国支持导弹防御的攻击行动将在发射之前降低,破坏或摧毁对手的导弹。” 1该文件呼吁美国将导弹防御与罢工力量和信息,监视和侦察(ISR)资产相结合,以提供“危机或冲突中最广泛的选择,并[改善]反对进攻攻击的总体可能性。”据说这种方法对于“全面的导弹防御战略”是必要的。 2但是,这种全面和综合的方法的实现是什么样的?
生物膜(BF)生产代表了一种细菌在不利条件下生存并增加其在宿主中的生存成功的策略[1]。不利的疾病可以诱导细菌从自由浮动(浮游生物)转化为梗塞细胞,从而获得粘附,成长和形成在生物或非生物表面上的社区的能力[2,3]。这种生理代谢的变化通过特定的细胞 - 细胞通信机制(称为Quorum Sensing(QS)[4])影响整个细菌群落。因此,细菌群体将其代谢活性与细胞外聚合物物质(EPS)分泌,包括脂质,多糖,蛋白质,细胞外核酸(EDNA)和离子[5] [5]。在此细胞外基质中,细菌会增加对干燥,抗菌剂和宿主免疫系统作用的耐药性[6]。这种控制的合作经常涉及不同的细菌物种,导致多数菌BF [7-10]。BFS中的细菌在生长,毒力,持久性和抗菌耐药性(AMR)方面获得了共同的好处[11]。由于水平基因转移的频率和速度较高,BF细胞外基质可以视为抗生素耐药基因扩散的热点[12]。因此,BFS可以充当多种耐药性(MDR)细菌的储层,通常与严重疾病和死亡有关[11]。疾病控制和预防中心估计每年有超过200万个与MDR细菌有关的死亡和23,000例死亡[13]。其中,eSkape(肠球菌肠球菌,金黄色葡萄球菌,克雷伯氏菌肺炎,acinetobacter baumannii,baumannii,pseudomonaseudomonaseudomonaseuginosa和entobacter coptem 已包括六种高毒和抗生素的MDR细菌。 与相关的感染已包括六种高毒和抗生素的MDR细菌。与