就业和工人管理是根据《欧盟AI法》被认为是高风险的领域之一。这包括旨在用于(i)招聘或选择目的的AI系统,或(ii)做出影响与工作相关关系的条款,促进或终止工作相关的合同关系,根据个人行为或个人特征或监测员工中个人的监控或评估工作的任务。与工作相关的合同关系原则上比“香草”就业关系更广泛,并且可以与通过就业机构提供的平台工人,自雇顾问和员工捕获安排。《欧盟AI法》规定了高风险AI系统的实质性义务,在工作场所中高风险AI系统的部署方面有其他要求。
呼吁AI系统透明度的呼吁在各种利益相关者到研究人员再到用户的各种利益相关者的数量和紧迫性都在增长(在开发AI的公司的比较缺失)中。AI的透明度概念比比皆是,每个人都涉及独特的兴趣和关注点。 在计算机安全性中,透明度同样是一个关键概念。 安全社区数十年来一直在默默无闻上反对所谓的安全性 - 隐藏系统的工作方式可以保护其免受攻击的想法 - 对行业和其他利益相关者的压力重大压力[20,126,162]。 在几十年中,在一个不完美和持续的社区过程中,安全研究人员和实践者逐渐围绕着如何平衡透明度利益与可能的负面影响。 本文问:AI社区以透明度的经验可以从哪些见解中获得什么见解? ,我们在安全统一的观点中确定了三个关键主题,及其对透明度的利益及其在平衡透明度与反击利益之间的方法。 对于每个人,我们研究了与AI透明度相关的分析和见解。 然后,我们提供了一个案例研究讨论,讨论透明度如何塑造了匿名的研究子场。 最后,将我们的重点从模拟转变为差异,我们重点介绍了关键的透明度问题,在这些问题中,现代AI系统与其他类型的安全 - 关键安全系统提出了挑战,为安全和AI社区提出了有趣的开放问题。AI的透明度概念比比皆是,每个人都涉及独特的兴趣和关注点。在计算机安全性中,透明度同样是一个关键概念。安全社区数十年来一直在默默无闻上反对所谓的安全性 - 隐藏系统的工作方式可以保护其免受攻击的想法 - 对行业和其他利益相关者的压力重大压力[20,126,162]。在几十年中,在一个不完美和持续的社区过程中,安全研究人员和实践者逐渐围绕着如何平衡透明度利益与可能的负面影响。本文问:AI社区以透明度的经验可以从哪些见解中获得什么见解?,我们在安全统一的观点中确定了三个关键主题,及其对透明度的利益及其在平衡透明度与反击利益之间的方法。对于每个人,我们研究了与AI透明度相关的分析和见解。然后,我们提供了一个案例研究讨论,讨论透明度如何塑造了匿名的研究子场。最后,将我们的重点从模拟转变为差异,我们重点介绍了关键的透明度问题,在这些问题中,现代AI系统与其他类型的安全 - 关键安全系统提出了挑战,为安全和AI社区提出了有趣的开放问题。
在各州探索如何将 AI 融入 SNAP 管理的同时,一些州已开始使用聊天机器人和虚拟代理来自动化某些管理流程。各州已经在使用美国农业部 (USDA) 所称的“机器人流程自动化”(RPA),这些机器人使用“结构化输入和基于规则的非自由逻辑”提供输出。2 截至 2023 年,九个州正在使用 RPA,包括通过部署聊天机器人与客户沟通以收集更新信息和输入数据来协助重新认证处理,从而使州绩效工作人员可以专注于资格确定和其他更复杂的流程。3(绩效工作人员是无党派的公共服务雇员,他们接受了广泛的培训,以指导 SNAP 申请人完成整个流程,进行 SNAP 认证面试,并就 SNAP 资格和福利做出最终决定。)RPA 系统与 AI 不同。联邦政府将人工智能定义为“一种人工系统,能够在没有大量人工监督的情况下,在不同且不可预测的情况下执行任务,或者能够在接触数据集时从经验中学习并提高性能。”4,5
德克萨斯能源走廊的石油和天然气经济正在腾飞,当忙碌的高管来到休斯顿西部地区做生意时,他们会降落在休斯顿行政机场 (KTME) 新扩建的亨利克森喷气中心。这个固定基地运营 (FBO) 旨在让他们充分利用地面时间,并通过全套便利设施满足他们的需求,包括办公空间、礼宾车、飞行员休息室、现场助理和飞机冷却装置——所有这些都是全天 24 小时提供的。
保持我们的排放量降低净零碳排放,主要涉及将温室气体(GHG)排放降至最低。第一步是减少范围1排放,与建筑物和车辆燃料消耗相关的直接温室气体排放。第二个是减少与购买网络和建筑物购买电力相关的间接温室气体排放量的范围。Orange已经启动了计划,以增加我们从可再生能源(包括风能,太阳能和水力发电)产生的电力供应。解决范围3的排放量也很重要,即使它们超出了公司的直接控制,并且所涉及的方法尚未完全成熟。此范围涵盖了与供应商,员工通勤和商务旅行以及与客户使用相关的下游排放相关的所有上游排放。范围3可以通过优化购买原材料,产品和服务,限制商务旅行和员工通勤,将生态设计原则应用于产品和服务,并更有效地管理废物,从而减少3排放。
1。fda。FDA批准可以延迟1型降解的第一种药物。2022。[2023年1月10日]。可从:https://www.fda获得。gov/news-events/press-nouncements/fda-批准 - 优先级 - 拖延 - 延迟发作型-1糖尿病。2。Dayan CM,Besser Rej,Oram RA等。 在儿童期预防1型糖尿病。 科学。 2021; 373(6554):506-510。 3。 Anderson RL,Dimeglio LA,Mander AP等。 创新的设计和后勤考虑因素,用于加快1型糖尿病的组合疾病改良治疗的临床发展。 糖尿病护理。 2022; 45(10):2189-2201。 4。 Dimeglio LA,Evans-Molina C,Oram Ra。 1型糖尿病。 柳叶刀。 2018; 391(10138):2449-2462。 5。 Oram ra,Sims EK,Evans-Molina C.β细胞1型糖尿病:质量和功能;睡觉还是死了? 糖尿病学。 2019; 62(4):567-577。 6。 Mayer-Davis EJ,Kahkoska AR,Jefferies C等。 ISPAD临床实践共识指南2018:儿童和青少年糖尿病的定义,流行病学和分类。 儿科糖尿病。 2018; 19(增刊27):7-19。Dayan CM,Besser Rej,Oram RA等。在儿童期预防1型糖尿病。科学。2021; 373(6554):506-510。3。Anderson RL,Dimeglio LA,Mander AP等。 创新的设计和后勤考虑因素,用于加快1型糖尿病的组合疾病改良治疗的临床发展。 糖尿病护理。 2022; 45(10):2189-2201。 4。 Dimeglio LA,Evans-Molina C,Oram Ra。 1型糖尿病。 柳叶刀。 2018; 391(10138):2449-2462。 5。 Oram ra,Sims EK,Evans-Molina C.β细胞1型糖尿病:质量和功能;睡觉还是死了? 糖尿病学。 2019; 62(4):567-577。 6。 Mayer-Davis EJ,Kahkoska AR,Jefferies C等。 ISPAD临床实践共识指南2018:儿童和青少年糖尿病的定义,流行病学和分类。 儿科糖尿病。 2018; 19(增刊27):7-19。Anderson RL,Dimeglio LA,Mander AP等。创新的设计和后勤考虑因素,用于加快1型糖尿病的组合疾病改良治疗的临床发展。糖尿病护理。2022; 45(10):2189-2201。4。Dimeglio LA,Evans-Molina C,Oram Ra。 1型糖尿病。 柳叶刀。 2018; 391(10138):2449-2462。 5。 Oram ra,Sims EK,Evans-Molina C.β细胞1型糖尿病:质量和功能;睡觉还是死了? 糖尿病学。 2019; 62(4):567-577。 6。 Mayer-Davis EJ,Kahkoska AR,Jefferies C等。 ISPAD临床实践共识指南2018:儿童和青少年糖尿病的定义,流行病学和分类。 儿科糖尿病。 2018; 19(增刊27):7-19。Dimeglio LA,Evans-Molina C,Oram Ra。1型糖尿病。柳叶刀。2018; 391(10138):2449-2462。 5。 Oram ra,Sims EK,Evans-Molina C.β细胞1型糖尿病:质量和功能;睡觉还是死了? 糖尿病学。 2019; 62(4):567-577。 6。 Mayer-Davis EJ,Kahkoska AR,Jefferies C等。 ISPAD临床实践共识指南2018:儿童和青少年糖尿病的定义,流行病学和分类。 儿科糖尿病。 2018; 19(增刊27):7-19。2018; 391(10138):2449-2462。5。Oram ra,Sims EK,Evans-Molina C.β细胞1型糖尿病:质量和功能;睡觉还是死了? 糖尿病学。 2019; 62(4):567-577。 6。 Mayer-Davis EJ,Kahkoska AR,Jefferies C等。 ISPAD临床实践共识指南2018:儿童和青少年糖尿病的定义,流行病学和分类。 儿科糖尿病。 2018; 19(增刊27):7-19。Oram ra,Sims EK,Evans-Molina C.β细胞1型糖尿病:质量和功能;睡觉还是死了?糖尿病学。2019; 62(4):567-577。 6。 Mayer-Davis EJ,Kahkoska AR,Jefferies C等。 ISPAD临床实践共识指南2018:儿童和青少年糖尿病的定义,流行病学和分类。 儿科糖尿病。 2018; 19(增刊27):7-19。2019; 62(4):567-577。6。Mayer-Davis EJ,Kahkoska AR,Jefferies C等。ISPAD临床实践共识指南2018:儿童和青少年糖尿病的定义,流行病学和分类。 儿科糖尿病。 2018; 19(增刊27):7-19。ISPAD临床实践共识指南2018:儿童和青少年糖尿病的定义,流行病学和分类。儿科糖尿病。2018; 19(增刊27):7-19。
[1] [最高1.53倍的平均绩效增长在上一代。请参阅Intel.com/processorclaims:第四代Intel Xeon可伸缩处理器。结果可能会有所不同。][2] [用于实时推理和内置Intel AMX(BF16)与上一代(FP32)的实时推理和训练的pytorch性能高达10倍。请参阅Intel.com/ ProcessorClaims:第四代Intel Xeon可伸缩处理器。结果可能会有所不同。][3] [与上一代相比,第四代Xeon客户可以期望使用内置加速器时,目标工作负载的每瓦效率为2.9×1的平均性能提高。Geomean of following workloads: RocksDB (IAA vs ZTD), ClickHouse (IAA vs ZTD), SPDK large media and database request proxies (DSA vs out of box), Image Classification ResNet-50 (AMX vs VNNI), Object Detection SSD-ResNet-34 (AMX vs VNNI), QATzip (QAT vs zlib)。]
摘要 使用液态氙作为靶材的探测器被广泛应用于稀有事件搜索。关于相互作用粒子的结论依赖于对沉积能量的精确重建,而这需要借助放射源对探测器的能量标度进行校准。然而,微观校准,即将激发量子数转换为沉积能量,也需要充分了解在液态氙中产生单个闪烁光子或电离电子所需的能量。这些激发量子的总和与靶材中沉积的能量成正比。比例常数是平均激发能量,通常称为 W 值。在这里,我们展示了在带有混合(光电倍增管和硅光电倍增管)光电传感器配置的小型双相氙时间投影室中通过电子反冲相互作用对 W 值进行测量的方法。我们的结果基于在 O (1 − 10 keV) 处使用内部 37 Ar 和 83m Kr 源以及单电子事件进行的校准。我们得到的值为 W = 11 . 5 + 0 . 2 − 0 . 3 ( syst .) eV,统计不确定性可忽略不计,低于之前在这些能量下测量的值。如果得到进一步证实,我们的结果将与模拟液态氙探测器对粒子相互作用的绝对响应相关。
人类文明目前正在超越许多关键的地球边界,面临着生态崩溃的多维危机,包括危险的气候变化、海洋酸化、森林砍伐和生物多样性崩溃(Lenton 等人,2020 年;Rockström 等人,2009 年;Ste ffien 等人,2015 年;Ste ffien 等人,2018 年)。与关于人类世的一般叙述相反,这场危机不是由人类本身引起的,而是由特定的经济体系引起的:这个体系以永久扩张为前提,不成比例地使少数富人受益(Moore,2015 年)。经济增长与生态崩溃之间的关系现在在实证记录中得到了很好的证明。主流经济学中,主流观点认为我们必须继续追求永久增长(见 Hickel,2018a),因此必须寻求将 GDP 与生态影响脱钩,实现“绿色”增长。不幸的是,绿色增长的希望没有什么根据。没有历史证据表明 GDP 与资源使用(以物质足迹衡量)长期绝对脱钩,所有现存模型都预测即使在乐观条件下也无法实现这一目标(Hickel & Kallis,2020 年;Vadén、Lähde、Majava、Järvensivu、Toivanen & Eronen,2020 年;Vadén 等人,2020b)。只需用可再生能源取代化石燃料,即可实现 GDP 与排放的绝对脱钩;但如果经济继续以正常速度增长,这一目标的实现速度无法足够快,无法实现 1.5°C 和 2°C 的碳预算。更快的增长意味着更多的能源需求,而更多的能源需求使得在我们剩下的短暂时间内用可再生能源来满足它变得更加困难(Hickel & Kallis,2020年;Raftery 等人,2017 年;Schroder & Storm,2020 年)。
完整的昆明 - 蒙特利尔全球生物多样性框架的结果目标和23个面向动作的目标。至关重要的是,GBF的目标和目标被视为不可分割的整体,并迅速,全面地实施。21取得成功,澳大利亚政府与州和领土政府的合作至关重要,以实现GBF的目标和目标。澳大利亚的每个管辖区都应考虑如何衡量针对GBF目标的进度,包括将在哪些程度上衡量哪些生物多样性的要素,并通过哪些资金以及什么资金来衡量。应制定政府间协议,概述澳大利亚政府以及州和领土政府在全球生物多样性框架中实现所有目标的责任。