危险并被处置。对 487 英亩 FBNA 进行了靶场侦察横断面评估,以确定 MEC 的存在与否。横断面是个人计数和记录研究对象出现次数的路径。• 2008 年仪器辅助地面和地下横断面调查(美国陆军工程兵团,2008 年):使用手持仪器对 1 号靶场和 5 号靶场部分区域的 71 英亩土地进行了横断面调查。在 1 号靶场,未发现 MEC,但回收了大约 27 磅 MD。在 5 号靶场,回收、拆除并处置了一枚 3 英寸防空高爆弹和一枚 MK15 反坦克地雷。还回收了大约 52 磅 MD。发现了两个潜在的埋葬坑(约 20 英尺宽、20 英尺长和 15 英尺深)。 • 2008-2009 年地面和地下清理
内嗅皮质内侧和外侧部分(MEC 和 LEC)的神经元轴突形成内侧和外侧穿通通路(MPP 和 LPP),它们是海马皮质输入的主要来源。解剖学、生理学和药理学研究表明 MPP 和 LPP 是不同的。不幸的是,评估这两种通路损伤的功能意义尚未使用已知对啮齿动物海马功能敏感的任务。在本研究中,我们使用生理学和解剖学相结合的方法对 MPP 和 LPP 进行分离损伤。对 MPP 或 LPP 损伤的大鼠进行了水任务中的位置学习测试和对情境的辨别性恐惧条件化任务。结果表明,MPP 损伤导致位置学习受损,而 LPP 损伤则不会。情境辨别数据显示,MPP 损伤的恐惧效应类似杏仁核,减弱,LPP 损伤的辨别性恐惧条件化情境效应增强。与 Buzsa´ki 提出的空间学习两阶段模型一致(Buzsa´ki G,记忆痕迹形成的两阶段模型:“嘈杂”大脑状态的作用。神经科学 1989;31(3):551–570),水任务中的损伤可以解释为反映 MPP 突触在激活海马神经元方面的更高效率。情境辨别结果可以通过到达 MEC 和 LEC 的感觉信息的分离来解释,或者通过 MEC 的边缘性质与 LEC 的感觉性质之间的分离来解释。© 1999 Elsevier Science BV 保留所有权利。
开始日期:2020 年 5 月 15 日 截止日期:2020 年 5 月 29 日 任务名称:全职项目经理 编号:MH-MEC-167280-CS-INDV 马绍尔群岛共和国已从世界银行获得可持续能源发展项目(SEDeP)的资金,并打算将部分收益用于咨询服务。 咨询服务(“服务”)包括“协助 MEC 实现 GRMI 雄心勃勃的气候变化和可再生能源目标,特别是通过支持实施由世界银行资助的可持续能源发展项目(SEDeP)及其后续阶段。 项目经理将负责总体项目协调和技术指导,并将在 DIDA 采购团队的支持下领导不同包和研究的采购。 必要时,将招募技术人员,以支持在 NEO 实施第 2 部分。 工作地点为马绍尔群岛马朱罗的 MEC 办公室。初始任期为 2 年,全职,如果表现令人满意,可以延长至项目实施期(预计约 3 年)。该职位将有三 (3) 个月的试用期。附件为该任务的详细职权范围 (TOR)。Marshalls 能源公司 (MEC) 现邀请符合条件的个人(“顾问”)表明他们对提供服务的兴趣。感兴趣的顾问应提供信息,证明他们具有执行服务所需的资格和相关经验(附上简历,描述在类似任务、类似条件下的经验等)。公司员工可以通过雇用公司表达对任务的兴趣,在这种情况下,在选择过程中只会考虑个人的经验和资格。选择顾问的标准是:教育
cg1。 div>在工程,电气工程,能源工程,化学工程,机械工程,连续媒体,工业电子,自动化,自动化,自动化,制造,制造,制造,制造,材料,材料,材料,材料,材料,材料,材料,工业计算,工业计算,工业范围,工业,工程,工程机制,连续媒体,工程,工程,工程,材料,工程,工程,,地规划,材料,材料,材料,材料,材料,材料,材料,材料,材料,工业,有足够的了解:工程学,电气工程,能源工程,化学工程,机械工程,连续媒体力学,工业电子,自动电子,制造,制造,材料,材料,定量管理方法,工业计算机科学,乌尔巴氏式科学,乌鸦科学,乌尔巴氏菌, div> < < <
科钦- 682021,喀拉拉邦 广告编号:A2/259/2024/MEC 日期:2024 年 11 月 12 日 印度政府电子和信息技术部 (MeitY) 芯片到初创企业 (C2S) 计划资助项目征集项目助理-I
这项工作已被研究,其中包括波特兰水泥(CP-V ARI)[0%,10%,20%和30%]的巨大分数作为模拟具有非氢水泥分数在生产Pinus sp的化合物粒子面板中的施工残基部分。和基于蓖麻的聚氨酯树脂,旨在评估添加颗粒状材料(例如施工废物)产生的面板的潜力。借助巴西规范NBR 14810和方差分析(ANOVA),用水泥添加的MDP面板的物理和机械表征分析了物理和机械性能。4400 mm x 400 mm x 10 mm面板由Pinus SP颗粒制造。和聚氨酯树脂基于Mamona油,粘合剂含量为10%,相对于颗粒干质量,每种处理总共16个面板。对于每个面板3个防护机构(CP),以评估物理和机械性能。在10%以上的质量水泥分数的添加对面板的机械性能产生了负面影响,因为它降低了MOE和MOR的值。密度,吸收和肿胀特性保留在标准要求之内。
抵消移动/固定连接低增长和减少客户流失仍然是重点,捆绑需求也起到了推动作用。边缘焦点凸显了 B2B 客户寻求本地计算的更广泛趋势;MEC 和云计算是促进私人无线发展的同一枚硬币的两面。
2022 巴黎高等师范学院、索邦大学、概率与统计力学研讨会(在线)、麻省理工学院、莱比锡(概率高级研讨会分析)、巴黎萨克雷大学(LPTMS)、哥伦比亚大学、华沙理工大学(在线)
摘要 — 基于人工智能 (AI) 的技术通常用于根据策略和机制对决策进行建模,这些策略和机制可以为许多交互实体带来最佳收益,这些实体通常会表现出对抗行为。在本文中,我们提出了一种支持 AI 的多接入边缘计算 (MEC) 框架,该框架由配备计算功能的无人机 (UAV) 支持,以促进物联网应用。首先,基于博弈论模型确定物联网节点向无人机安装的 MEC 服务器的最佳数据卸载策略的问题,同时考虑物联网节点的通信和计算开销。通过证明博弈是子模的,证明了至少一个纯纳什均衡 (PNE) 点的存在。此外,基于最佳响应动态 (BRD) 算法的结果,或通过替代强化学习方法(即梯度上升、对数线性和 Q 学习算法),获得并研究了不同的操作点(即卸载策略),这些方法探索和学习环境以确定用户的稳定数据卸载策略。通过建模和仿真,对这些方法的相应结果和固有特征进行了严格的比较。索引术语 — 边缘计算;博弈论;强化学习;物联网;
OPW Clean Energy Solutions 成立于 2021 年 12 月,当时 OPW 收购了 ACME Cryogenics 和 RegO Products,2024 年 7 月,随着 Demaco、Marshall Excelsior Company (MEC) 和 SPS Cryogenics,投资组合扩大到五家公司。ACME 是任务关键型低温产品和服务的领先提供商,这些产品和服务促进了低温液体和气体的生产、储存和分销。RegO 是面向低温和液化气终端市场的高度工程化流量控制解决方案的领先提供商。Demaco 是一家专门为低温行业设计的真空绝缘解决方案的设计者、开发者、建造者、测试者和安装者。MEC 是用于处理压缩和液化气体的严苛服务流量控制解决方案的领先开发商。SPS Cryogenics 是用于低温应用的管道系统和辅助设备的开发商。他们共同将 OPW 带入传统燃料解决方案之外,并帮助确定替代能源市场的未来发展方向。有关 OPW 清洁能源解决方案的更多信息,请访问 www.opwces.com。