MECP2中的突变引起了RETT综合征(RTT),这是一种X链接的神经发育障碍,导致女性的认知障碍广泛。虽然RTT症状的确切病因尚不清楚,但其临床表现的一种可能解释是,由于大脑对神经元活动和感觉体验的变化的反应,MECP2的丧失导致神经回路的误差。在这里,我们表明MECP2在小鼠大脑中的四个残基(S86,S274,T308和S421)响应于神经元活性,并且我们会产生四倍的敲击 - 在(QKI)中 - 在(QKI)中,这四个活性 - 依赖性部位 - 依赖性的站点可预防丙烷磷酸化。QKI小鼠在两个大脑区域中不显示明显的RTT表型或可检测的基因表达变化。然而,来自QKI小鼠的视网膜生成突触的电生理记录表明,虽然消除突触消除最初在P14处是正常的,但在P20时会受到显着损害。值得注意的是,这种表型与先前报道的MECP2 NULL小鼠的突触细化缺陷不同,其中突触最初是完善的,但在产后第三周后退缩。因此,我们提出了一个模型,其中活性 - 诱导的MECP2磷酸化对于在产后早期的视网膜生成突触成熟的适当时间至关重要。
摘要背景:MECP2变体引起X染色体相关的罕见发育综合征。通常,该突变是零星的,发生在女性中,对男性致命。准确的遗传和临床诊断被认为是症状管理和新疗法的发展所必需的。这些目标可能很难在更多的因素中涉及携带同一MECP2变体的患者的高度可变临床图片中的因素。我们描述了两个兄弟携带相同MECP2变体的临床图片,并将其与文献中发表的病例进行了比较。方法:已知大多数MECP2突变是从头突变,这就是为什么夫妻俩其他孩子中突变的复发的原因。出乎意料的是,我们的常规基因检测表明,一名23岁男子(P1)和他的弟弟(P2)携带同样的半细胞病原失误变体C.419c> t,p。(ALA140VAL)(Transcript NM_004992.3)MECP2的MECP2,MECP2的MECP2是MECP2的,它是从他们的母亲身上遗传而来的。因此,认为有必要进一步的临床评估和与文献案例进行比较。结果:P1患有严重的综合症智力障碍(ID),而他的兄弟的ID基本上限于口头技能问题。P1和他的弟弟都没有被诊断出患有RETT综合征。P1(与他的弟弟不同)有几个舌,社交和运动困难;破坏性行为是治疗最困难的症状。P1对几项医学和非医疗治疗试验的反应仍然不足,因此要求患者长期住院。文献综述表明,除我们的家庭外,还有其他五个家庭,其中一个以上雄性携带相同的MECP2 P.Ala140Val突变,例如P1和P2。来自我们的所有24名男性(n = 2)和其他(n = 22)的表型,大概是非致命的突变显示出很大的可变性。结论:男性MECP2的P.Ala140Val突变与罕见的X染色体发育障碍有关,具有高度可变的表型。需要进一步的研究来更好地理解所有可以解释同一基因型内表型差异以找到最佳药物疗法的影响因素。
雷特综合征 (RTT) 是一种 X 连锁神经发育障碍,由年轻女性 X 染色体上的甲基 CpG 结合蛋白 2 ( MECP2 ) 的功能丧失杂合突变引起。从失活的 X 染色体 (Xi) 重新激活沉默的野生型 MECP2 等位基因代表着对女性 RTT 患者的一个有希望的治疗机会。在这里,我们应用了一种多重表观基因组编辑方法,从 RTT 人胚胎干细胞 (hESC) 和衍生的神经元中重新激活 Xi 中的 MECP2。通过 dCas9-Tet1 和靶向单向导 RNA 对 MECP2 启动子进行去甲基化,从 RTT hESC 中的 Xi 重新激活 MECP2,而在转录水平上没有可检测到的脱靶效应。来自甲基化编辑的 RTT hESC 的神经元维持了 MECP2 的再激活,并逆转了 RTT 的两个特征:体细胞尺寸变小和电生理异常。在 RTT 神经元中,通过 dCpf1-CTCF(与 CCCTC 结合因子融合的催化死亡 Cpf1)和靶 CRISPR RNA 隔离甲基化编辑的 MECP2 基因位点可增强 MECP2 的再激活并挽救 RTT 相关的神经元缺陷,为表观基因组编辑治疗 RTT 和其他潜在的显性 X 连锁疾病提供了概念验证研究。
yi Liu,1,7 Anthony Flamier,1,5,6,7 George W. Bell,1 Annette Jun Dioo,2 Troy W. W. W. Whitfield,1 Hao-Che Wang,1 Yizhe Wu,1 Fabian Schulte,1 Max Friesen,1 Maxi friesen,1 Ruisi Guo,1 Maisi Guo,1 MaisaMitalipipova,1 shawn liu sen liu v。理查德A.Young,1,2和Rudolf Jaenisch 1,2,8, * 1 Whitehead生物医学研究所,剑桥,马萨诸塞州剑桥,马萨诸塞州02142,美国2,美国马萨诸塞州生物学系,马萨诸塞州剑桥,马萨诸塞州02142马萨诸塞州理工学院,剑桥,马萨诸塞州02142,美国5现在的地址:神经科学系,蒙特利尔大学,蒙特利尔大学,QC H3C 3J7,加拿大6的地址:Chu Sainte-Justine Center:Chu Sainte-Justine Research Center,Montreal,Montreal,Montreal,Montreal,QC H3T 1C5,QC H3T 1C5,加拿大7. superally 8 Leads nequime nesumit.sumit.mit.mit.sumit.mit.mit.mit.mit.imit.mit.mit.imit.mit.mit.mmitimit.mit.mmitimit.mit.mmitimit.mit.mit.mmitimit.mit.mmitimit.mit.mmitimit。 https://doi.org/10.1016/j.neuron.2024.04.007
meCP2是成熟神经细胞中丰富的蛋白质,它与含甲基化胞嘧啶的DNA序列结合。MECP2基因中的突变引起严重的神经疾病RETT综合征(RTT),引发对基本分子机械性的深入研究。已经提出了多个功能,其中之一涉及剪接中的调节作用。在这里,我们利用高质量转录组数据集的最新可用性来定量探测MECP2对替代剪接的潜在影响。使用可以同时捕获线性和非线性关联的各种机器学习方法,我们表明MECP2级别差异很大,对三种不同系统中的替代剪接具有最小的影响。替代剪接显然也不对DNA甲基化水平的心理变化无动于衷。我们的结果表明,剪接的调节不是MECP2的主要功能。他们还强调了多变量定量分析在制定生物学假设中的重要性。
摘要:母体糖尿病与后代神经发育障碍的更大风险有关。已经确定高血糖会改变调节脑发育过程中神经干细胞(NSC)命运的基因和microRNA(miRNA)的表达。在这项研究中,在从糖尿病小鼠胚胎的前脑中获得的NSC中分析了甲基-CPG结合蛋白-2(MECP2),一种全球染色质组织者和突触蛋白的关键调节剂。与对照组相比,在糖尿病小鼠胚胎的NSC中,MECP2显着下调。miRNA靶标的预测表明,miR-26家族可以调节MECP2的表达,并进一步验证MECP2是miR-26b-5p的靶标。mecp2敲低或miR-26b-5p的过表达改变了tau蛋白和其他突触蛋白的表达,这表明miR-26b-5p通过MECP2改变了神经突的产物和突触发生。这项研究表明,母体糖尿病在NSC中上调了miR-26b-5p的表达,导致其靶标MECP2的下调,进而使神经突的产物和突触蛋白的表达呈现。总体而言,高血糖失调会突触发生,这可能表现为糖尿病妊娠后代的神经发育障碍。
甲基-CPG结合蛋白2(MECP2)基因中的抽象灭活突变是RETT综合征(RTT)的主要原因。尽管对MECP2功能进行了广泛的研究,但目前尚无RTT治疗。在这里,我们使用进化基因组学方法来构建无偏的MECP2基因网络,使用1028个真核基因组来优先使用具有MECP2的强共核心特征的蛋白质。专注于由FDA批准的药物靶向的蛋白质,导致了三个有希望的靶标,其中两个以前与MECP2功能(IRAK,KEAP1)相关,一种不是(EPOR)。针对这三种蛋白质(parcitinib,dmf和epo)的药物能够在培养的人类神经细胞类型中挽救MECP2失活的不同表型,并且似乎在炎症中会汇聚在核因子KAPPA B(NF-K B)上。这项研究强调了比较基因组学加速药物发现的潜力,并为RTT的治疗带来了潜在的新途径。
摘要 雷特综合征是一种无法治愈的神经发育障碍,由编码甲基-CpG 结合蛋白 2 (MeCP2) 的基因突变引起。这种疾病的基因治疗存在固有的障碍,因为 MECP2 在整个大脑中表达,并且其重复也会导致严重的神经系统疾病。在此,我们使用 AAV-PHP.eB 传递易不稳定的 Mecp2 (i Mecp2 ) 转基因盒,这会增加病毒 Mecp2 转基因的 RNA 不稳定性和低效蛋白质翻译,从而限制超生理的 Mecp2 蛋白水平。在有症状的 Mecp2 突变小鼠中静脉注射 PHP.eB-iMecp2 病毒可显著改善运动活动、寿命和基因表达正常化。值得注意的是,PHP.eB-iMecp2 给药在雌性 Mecp2 突变体或野生型动物中耐受性良好。相反,我们观察到接受治疗的雄性 Mecp2 突变小鼠对转基因产生了强烈的免疫反应,而这种反应可以通过免疫抑制来克服。总体而言,PHP.eB 介导的 i Mecp2 递送提供了广泛而有效的基因转移,同时保持了大脑中生理性 Mecp2 蛋白水平。
在大多数儿童中,RETT综合征是由MECP2基因中的变体引起的。在1999年,RETT综合征儿童中MECP2基因中变体的鉴定已使受影响的儿童对可能的疾病进行了基因检测和确认。rett综合征通常是由MECP2基因中的新生(新的,首次发生)变体引起的。MECP2基因中的变体也可以存在于其他神经系统疾病中。确切地说,MECP2基因变体如何导致RETT综合征。在大约95%的典型RETT综合征病例中发现了MECP2基因中的变体。在4个非典型RETT综合征的儿童中,有3个中发现了MECP2基因中的变体。在非典型RETT综合征中看到的其他基因变体包括CDKL5和FOXG1基因中的变体。
X 连锁 MECP2(甲基 CpG 结合蛋白 2)基因的功能丧失和获得突变是导致一系列通常严重的神经系统疾病的原因,这些疾病会影响男女。特别是,Mecp2 缺乏主要与女孩的雷特综合征 (RTT) 有关,而 MECP2 基因重复主要导致男孩的 MECP2 重复综合征 (MDS)。目前尚无治愈 MECP2 相关疾病的方法。然而,几项研究报告称,通过重新表达野生型基因可以恢复 Mecp2 缺陷动物的缺陷表型。这一原理证明支持许多实验室寻找新的治疗策略来治愈 RTT。除了旨在调节 MeCP2 下游通路的药理学方法外,还提出了大量针对 MECP2 或其转录本的遗传靶向方法。值得注意的是,两项专注于增强基因治疗的研究最近获准进行临床试验。两者都使用分子策略来很好地控制基因剂量。值得注意的是,基因组编辑技术的最新发展开辟了另一种方法,可以专门针对 MECP2 而不改变其生理水平。其他有吸引力的方法仅适用于无义突变,包括翻译通读 (TR) 和 t-RNA 抑制疗法。重新激活沉默 X 染色体上的 MECP2 基因座是治疗该疾病的另一种有效选择。在本文中,我们打算回顾用于治疗 RTT 的最新基因干预措施,描述当前的技术水平以及相关的优势和问题。我们还将讨论其他先进疗法的可能应用,这些疗法基于通过纳米粒子进行分子传递,已提出用于其他神经系统疾病,但尚未在 RTT 中进行测试。
