本研究详细阐述了具有四个主控与单个内存系统交互的 AMBA 总线接口,在内存控制器和其他支持外设之间使用仲裁器。使用 VHDL 开发了不同的模块,即 AHB MSTER、AHB SLAVE INTERFACE 和 AHB ARBITER(循环算法)。进一步将 FIFO、RAM 和 ROM 与内存控制器集成。四个 AHB 主控在仲裁器的帮助下启动操作并在单个总线上向内存控制器生成必要的控制信号。与 AHB BUS 系统中多数据通信的先前研究相比,所提出的架构显示了区域高效的管理。该系统模型与 Xilinx XC6vx75t-2ff484 合成,并使用 MODELSIM 进行仿真。索引词:AMBA、AHB Master、AHB Slave、AHB Arbiter、SOC、Xilinx。© 2020 由 MECS Publisher 出版。由现代教育和计算机科学研究协会负责选择和/或同行评审
首字母缩略词和缩写列表 BF 高炉 BOF 碱性氧气转炉 BTU 英热单位 CCUS 碳捕获、利用和储存 CE 公元 CO 2 二氧化碳 DRI 直接还原铁 EAF 电弧炉 EC 电力使用 ED 电力需求 EIA 美国能源信息署 EPA 美国环境保护署 FReSMe 从钢铁残余气体到甲醇 GHG 温室气体 GHGRP 温室气体报告计划 H 2 DRI 氢气直接还原 HBI 热压铁块 HYBRIT 氢气突破炼铁技术 IAC 工业评估中心 KDE 核密度估计 MECS 制造业能耗调查 MMBtu 百万英热单位 NAICS 北美行业分类系统 NP 非确定性多项式时间 PAUP 使用 Paup 进行系统发育分析 SIC 标准行业分类 SIDERWIN 通过电解法开发工业无 CO 2 钢铁生产新方法
首字母缩略词 定义 GHG 温室气体 MMT 百万公吨 LCOH 平准供热成本 LCOE 平准电力成本 kWh 千瓦时 MWh 兆瓦时 MMBtu 百万英热单位 TBtu 万亿英热单位 CHP 热电联产 RNG 可再生天然气 EPA 美国环境保护署 DOE 美国能源部 CAELP 应用环境法律与政策中心 EIA 美国能源信息署 NREL 国家可再生能源实验室 PTC 生产税收抵免 ITC 投资税收抵免 IRA 通胀削减法案 MECS 制造业能源消费调查 (EIA) AEO 年度能源展望 (EIA) GHGRP 温室气体报告计划 (EPA) CAPEX 资本支出 VOM 可变运营和维护成本 FOM 固定运营和维护成本 TES 热能存储 TRL 技术就绪水平 COP 性能系数 NAICS 北美行业分类系统(美国人口普查局) LCFS 低碳燃料标准 RIA 监管影响分析 (EPA) OBPS 基于产出的定价体系 RGGI 区域温室气体倡议 EM&V 评估、测量和验证
如今,多个生物电化学系统 (BES) 模块的堆叠配置被认为是成功扩大该技术规模的最佳选择,无论是发电微生物燃料电池 (MFC) 还是耗电微生物电解或电合成电池 (MEC 或 MES)。虽然并联电连接允许独立操作堆叠中的每个 BES 而不会出现重大问题,但从能量转换的角度来看,串联堆叠的 BES 更具吸引力,因为它们的能量损失较低,并且可以在更高的电压下操作它们。然而,在串联连接的 MEC/MES 电池的情况下,高性能生物阳极可以将堆叠中性能较差的电池推到其“工作区”之外,导致不利的电位、不受控制的电压下降以及电活性生物膜的暂时或永久损坏。过去提出了一些电池平衡系统 (CBS),但需要电力电子方面的专业知识。在这项研究中,提出了一种基于商用二极管的简单、被动且低成本的 CBS。采用三台双室 MEC。进行了第一组实验,以表征电池并了解串联电池堆中电压不平衡的原因。然后,采用并验证了 CBS。
AI 人工智能 ANL 阿贡国家实验室 bbl 桶 BF 高炉 BOF 碱性氧气转炉 Btu 英热单位 CCUS 碳捕获和利用系统 CH 4 甲烷 CHP 热电联产 CO 一氧化碳 CO 2 二氧化碳 DOE 美国能源部 DRI 直接还原铁 EAF 电弧炉 EIA 美国能源信息署 EM 电磁 GHG 温室气体 H 2 氢气 HCFC 氢氯氟烃 IoT 物联网 IR 红外线 kg 千克 kWh 千瓦时 lb 磅 LBNL 劳伦斯伯克利国家实验室 MECS 制造业能源消耗调查 MMBtu 百万英热单位 MMT 百万公吨 MT 公吨 MW 微波 MYPP 多年期计划 N 2 O 一氧化二氮 NAICS 北美行业分类系统 NO x 氮氧化物 NREL 美国国家可再生能源实验室 ORC 有机朗肯循环 ORNL 橡树岭国家实验室 Q&A 问答 R&D 研究与开发 RAPID 工艺强化部署的快速发展 RD&D 研究、开发和演示 RF 射频 RO 反渗透 SCADA 监控和数据采集
of of Ce小时:停止GH4223或通过G-Georgiadis@kellogg.northwestern.edu给我发送电子邮件,以安排约会。课程描述,ON:在过去的50年中,应用理论家已经解决了许多重要且严密的问题:例如,当工人的e ort不相似时,雇主应该如何设计一个不适的计划?政府应该如何设计其税收计划?企业应该如何为一篮商品设计销售机制?规划管理局应该如何将医疗居民与医院相匹配?虽然许多论文阐明了新型机制,分析重要的交易并有助于破坏经济现象,但大多数人都停止提供一种令人信服的方式来使用可用数据来回答实际setngs中的这些问题。本课程的重点是“数据驱动”的经济理论 - 鉴于可用数据的真实情况以及设计师可用的知识,其模型旨在回答此类先例问题。我们将介绍几篇文献的论文,包括合同理论,机制设计,辅助,市场设计,内部劳动力市场,分类和社会保险。可交付成果包括几个介绍 - 本课程的核心目标是磨练您的养育技巧,以及一个纸质项目,可能构成2张或第3年纸的基础。目标受众:MEC和经济学博士学位学生,以及对应用经济学感兴趣的学生,歌剧,演出和培养学生。目标:该课程有三个主要的objecives。首先是使您熟悉跨越理论和经验的各种文献的研究。格式:每个3H类都包含应用。第二个是教您成为一个应用理论研究人员。最终的理想是磨练您的伴侣技能。在研讨会和会议上宣传您的作品是传播它的主要方式,这使得这是至关重要的技能。朝着这些目标进行,您将提供几个出版或后期工作论文的45'介绍,并执行数据驱动的理论项目(最多2个团队),在那里您必须逐渐陷入问题,开发一个框架并解释需要哪些数据来操作它,提供初步结果并提供本文的计划来完成该论文。 (目的是帮助您启动数据驱动的理论论文。) 90'讲座和两个45'学生演讲。,您将提供几个出版或后期工作论文的45'介绍,并执行数据驱动的理论项目(最多2个团队),在那里您必须逐渐陷入问题,开发一个框架并解释需要哪些数据来操作它,提供初步结果并提供本文的计划来完成该论文。(目的是帮助您启动数据驱动的理论论文。)90'讲座和两个45'学生演讲。
首先,LRTI 团队!谢谢,谢谢,谢谢!我谨亲自向你们所有人表示感谢。我最亲密的同事 AGG 和 JEF 教会了我很多东西。马修和兰布罗斯!昨天和今天的 U1015 成员:Lisa、Agathe、Marine、Imran、Gladys、Pierre、Eugénie、Nicolas、Carolina、Yacine、Camille、Cissé、Caroline、Nathalie、Marion 以及所有其他爱好者!!! ENS 的“女孩”:Masha、Diane 和 Félicie。平台上的“伙计们”(也许更像 Yann!)还有 Alexia! BiGR 同事:Bastien 和 Marine(感谢您的耐心)。那些 UGF 的人!我保证我确实尽了最大努力准时到达。 metabolo 的专业人士:Claudia、Sylvère 和 Kroemer 教授。娜塔莉和出色的 LIO 团队。整个 PREMIS 团队+++Miha,我的兄弟(多么支持啊!)。 Jean-Marie、Ariane、Stéphane、Capucine 以及 DITEP 的全体人员:很快再见!马里恩和维罗妮克:我很高兴得知你们离我并不远。我的推荐人:Benjamin Terrier 教授、Olivier Lambotte 教授和 Xavier Mariette 教授。 Vassili Soumelis 和他的团队给了我坚持下去的愿望。所有使这个项目成长的人:Matthieu、Camille、Kevin、Aymeric、Andrei、Leonardo、Nicolas、Laetitia、Paul(!)以及更多我忘记的人。 GR 血液科:您让我“临床”爆发氧气!
微生物电化学反应可用于合成高附加值化学品和固定CO2等。[7–9] 双向电子转移通过直接电子转移、纳米线转移和穿梭转移等多种自适应途径发生,表明电子转移效率是影响微生物电化学活性的关键因素。[2,5,10] 随着外电极可以有效地作为电子受体或供体被发现,人们对细菌与电极之间双向电子交换的深入探索已经在各种生物电化学系统中创造了新技术,例如微生物燃料电池(MFC)、微生物电解电池(MEC)、微生物海水淡化电池(MDC)和微生物电合成(MES))。 [1,11] 利用生物电化学系统,产电细菌可以革命性地从有机废物中产生可再生生物电,合成高价值化学品和生物燃料,或执行许多其他对环境重要的功能,如生物修复、海水淡化和生物传感。特别是,MFC 中细菌细胞外电子转移 (EET) 过程的利用已引起广泛关注,可替代我们已有 100 年历史的能源密集型有氧技术,成为废水处理方法的替代品。[12–14] 虽然许多可再生、碳中性的能源,如风能、太阳能、地热能和核能,已经开始取代化石燃料,以紧急缓解能源危机和全球变暖,但 MFC 可以更有效地产生清洁电力,同时去除废水中的污染物。为了解决这些紧迫的社会问题,人们对MFC进行了大量且持续的研究,主要集中在大规模系统的开发和运行上。[12,15] 扩大MFC的规模对于应对迫在眉睫的能源-气候危机至关重要。尽管过去几十年来MFC取得了长足的发展和性能提升,但其规模化和商业化仍然难以实现。[12–16] 最关键的挑战是其性能极低,且性能不会随着尺寸的增大而成比例提高。[16–19] 许多研究已经探索了通过纳米技术、细菌基因工程和材料创新来提高MFC性能的方法。[13,20,21] 然而,它们能否经济高效且稳健地集成到大规模应用中还值得怀疑。尽管模块化堆叠
