巴拉卡核电站现已被公认为全球新核能项目的标杆,为阿联酋在全球清洁能源转型中发挥主导作用做出了贡献。这是阿联酋领导层战略眼光的结果,他们在 14 年前就决定投资核能,发电容量达到 5.6 吉瓦。在我们领导层的支持下,阿联酋核能公司 (ENEC) 和我们的韩国合作伙伴开发了一种融资和管理先进核能大型项目的新模式,该项目目前正在迅速实现阿联酋电力部门的脱碳。随着巴拉卡核电站 4 号机组的完工,ENEC 现在距离实现这一目标仅一步之遥
支付分配主要支出组(MEGS)£M健康与社会护理171.914住房和地方政府53.395教育29.718运输1.069气候变化和农村事务2.170经济,能源和计划1.270社会正义0.251中央服务和行政
摘要。背景/目的:结肠癌是最常见的癌症类型之一,也是癌症导致死亡的第二大原因。人们已经做出许多努力来研究结肠癌进展过程中的分子改变。然而,识别阶段特异性分子标记仍然是一个挑战。本研究的目的是开发一种新的计算方法来分析结肠癌各阶段差异基因表达和通路失调的变化,以揭示阶段特异性生物标记并加强药物再利用研究。材料和方法:结肠癌的转录组数据集用于识别(a)在四个结肠癌阶段中具有单调性倍数变化(MEG)的差异表达基因和(b)与参与差异表达基因(DEG)数量相关的单调富集(MEP)上升的扰动通路。通过计算机药物再利用流程,我们确定了调节 MEG 表达并靶向产生的 MEP 的药物。结果:我们的方法突出了 15 种 MEG 和影响其表达的 32 种候选再利用药物。我们还发现 51 种 MEP 根据其在结肠癌各阶段的 DEG 含量变化率分为两组。通过关注突出的再利用药物的目标 MEP,我们发现其中一种神经活性药物
Biowulf 是美国国立卫生研究院 (NIH) 首屈一指的高性能计算 (HPC) 系统,今年已满 25 岁。与你可能在 1990 年代投资的那台戴尔 486(32 MB RAM;是的,这应该足够了)不同,Biowulf 速度更快,容量比以往任何时候都大。事实上,Biowulf 是美国最强大的专用于生物医学研究的 HPC 系统。负责维护 Biowulf 的 NIH 信息技术中心 (CIT) 希望进一步增强其能力,以适应快速发展的人工智能 (AI) 和机器学习 (ML) 需求,CIT 高性能计算核心设施主任 Steve Bailey 表示。Bailey 表示,如今,Biowulf 为近 2,500 名活跃用户提供服务,其中包括 NIH IRP 中近四分之三的首席研究员。大部分用途是基因组学,其次是结构生物学和成像。 NHGRI 基因组学和数据科学研究中心高级研究员兼主任 Adam Phillippy 就是这样的 Biowulf 用户。他的实验室每年使用超过 3000 万个中央处理器 (CPU) 小时。借助 Biowulf,Phillippy 和他的同事能够在 2022 年完全完成人类基因组序列,纠正在 1990-2003 年左右的初始映射过程中引入的错误,并且
回头看。之前很多人都尝试过,但直到19世纪末才实现了首次载人飞行。这要归功于德国工程师奥托·李连塔尔 (Otto Lilienthal),他建造了一种类似于悬挂式滑翔机的结构,并于 1891 年 9 月成功地用它在空中飞行了 15 米的距离。李林塔尔的成功实验引起了莱特兄弟的注意,他们在工作中使用了李林塔尔在测量机翼轮廓升力时所做的计算。[1] 莱特兄弟于 1899 年开始对各种飞机进行实验,并最终于 1903 年制造出他们的第一架飞机。1903年12月14日,威尔伯第一次尝试搭乘它起飞,但由于强风,他只能在空中停留三分半钟,飞机也受损。幸运的是,只需要进行小修,他们于 1903 年 12 月 17 日再次尝试。当时,奥维尔登上了飞行员的位置,凭借37米长12秒的飞行,他和兄弟的名字永远写在了世界历史上。[2] 匈牙利第一架机动飞行器是由法国人路易斯·布莱里奥(Louis Bleriot)制造的。布莱里奥于 1909 年 10 月 15 日应匈牙利航空俱乐部的邀请抵达布达佩斯,两天后在 20 万人面前从乌尔尼乌特附近的基斯拉科斯军事训练场起飞。[3]