2023 年 3 月 10 日 代表 Ben Barnes 拨款委员会主席 众议院办公大楼,121 室 马里兰州安纳波利斯 21401 亲爱的 Barnes 代表: 我写信请求您对 HB 0911“马里兰清洁能源中心 - 气候技术创始人基金 - 成立”给予积极支持。 我是碳技术研究所 (www.carbontech.org) 的董事总经理,该研究所是一家位于马里兰州贝塞斯达的咨询公司,致力于协助马里兰州的初创企业进行技术商业化。马里兰清洁能源中心运营着一个名为马里兰能源创新加速器 (MEIA) 的项目。CTI 目前以顾问身份支持 MEIA。MEIA 计划加速了马里兰州企业、大学和实验室创造的新型清洁能源和气候技术的商业化,目标是创造新的马里兰州技术和制造企业。当企业从 MEIA 项目毕业时,它对非限制性资本有迫切的需求。 MCEC 气候技术创始人基金需要一对一匹配,它将向 MEIA 毕业生投资非限制性资本,用于以下用途:协助启动运营、获得专利权、支付筹款成本和其他用途。在正确的时间快速进行的小额战略投资将对使 MEIA 毕业生获得非稀释性(SBIR)和稀释性(风险)资本产生巨大影响,并帮助马里兰州实现我们的气候和经济发展目标。该立法为马里兰州清洁能源中心管理的气候技术创始人基金提供了基础资金。非常感谢您对 HB 0911 的考虑和积极支持。诚挚的,
[1] 2022. 韦氏词典:美国最值得信赖的在线词典。https://www.merriam-webster.com [2] Diego Antognini、Claudiu Musat 和 Boi Faltings。2021. 通过批评与解释互动。第三十届国际人工智能联合会议 IJCAI-21 论文集,周志华(编辑)。国际人工智能联合会议组织,515–521。https://doi.org/10.24963/ijcai.2021/72 主轨道。 [3] Alejandro Barredo Arrieta、Natalia Diaz-Rodriguez、Javier Del Ser、Adrien Bennetot、Siham Tabik、Alberto Barbado、Salvador Garcia、Sergio Gil-Lopez、Daniel Molina、Richard Benjamins、Raja Chatila 和 Francisco Herrera。2020 年。可解释人工智能 (XAI):概念、分类法、机遇和挑战,迈向负责任的人工智能。Inf. Fusion 58 (2020),82–115。[4] Gagan Bansal、Besmira Nushi、Ece Kamar、Walter S. Lasecki、Daniel S. Weld 和 E. Horvitz。2019 年。超越准确性:心智模型在人机团队表现中的作用。在 AAAI 人类计算与众包会议 (HCOMP) 上。 [5] Gagan Bansal、Tongshuang (Sherry) Wu、Joyce Zhou、Raymond Fok、Besmira Nushi、Ece Kamar、Marco Túlio Ribeiro 和 Daniel S. Weld。2021 年。整体是否超过部分?人工智能解释对互补团队绩效的影响。2021 年 CHI 计算机系统人为因素会议论文集 (2021 年)。[6] Pieter J. Beers、Henny PA Boshuizen、Paul A. Kirschner 和 Wim H. Gijselaers。2006 年。共同点、复杂问题和决策。群体决策与谈判 15 (2006),529–556。 [7] Umang Bhatt、Alice Xiang、S. Sharma、Adrian Weller、Ankur Taly、Yunhan Jia、Joydeep Ghosh、Ruchir Puri、José MF Moura 和 P. Eckersley。2020 年。可解释的机器学习在部署中的应用。2020 年公平、问责和透明度会议论文集 (2020 年)。[8] Wayne C Booth、William C Booth、Gregory G Colomb、Gregory G Colomb、Joseph M Williams 和 Joseph M Williams。2003 年。研究的技巧。芝加哥大学出版社。[9] Andrea Brennen。2020 年。当人们说他们想要“可解释的人工智能”时,他们真正想要的是什么?我们询问了 60 位利益相关者。2020 年 CHI 计算系统人为因素会议扩展摘要。1-7。 [10] Zana Buccinca、Phoebe Lin、Krzysztof Z Gajos 和 Elena Leah Glassman。2020 年。代理任务和主观测量可能会在评估可解释的人工智能系统时产生误导。第 25 届智能用户界面 (IUI) 国际会议论文集 (2020 年)。[11] Hao-Fei Cheng、Ruotong Wang、Zheng Zhang、Fiona O'Connell、Terrance Gray、F. Maxwell Harper 和 Haiyi Zhu。2019 年。通过 UI 解释决策算法:帮助非专家利益相关者的策略。在 2019 年 CHI 计算机系统人为因素会议论文集 (英国苏格兰格拉斯哥) 中。美国纽约州纽约,1-12。 https://doi.org/10.1145/3290605.3300789 [12] Erin K. Chiou 和 John D. Lee。2021 年。信任自动化:为响应性和弹性而设计。《人为因素》(2021 年)。[13] Meia Chita-Tegmark、Theresa Law、Nicholas Rabb 和 Matthias Scheutz。2021 年。您可以信任您的信任衡量标准吗?2021 年 ACM/IEEE 人机交互国际会议论文集 (2021),第 92-100 页。https://doi.org/10.1145/3434073.3444677 [14] Jin-Hee Cho、Kevin Chan 和 Sibel Adali。2015 年。信任建模调查。ACM 计算调查 (CSUR) 48,2(2015 年),1-40。[15] Herbert H. Clark。1996 年。使用语言。剑桥大学出版社。[16] David Roxbee Cox。1958 年。实验规划。 (1958 年)。