摘要 - 光检测和范围(LIDAR)已被广泛用于空中监视和自动驾驶。如果配备LIDAR,机器人技术甚至微型机器人的能力都可以大大增强,但是必须使用非常轻巧和小的LIDAR。微型机器人的尺寸接近鸟类或昆虫,几乎所有现有的激光雷达都太重了,对它们来说太大了。在这项工作中,提出并证明了其光学扫描仪的新型MEMS LIDAR,其光学扫描仪已被提出并证明。扫描仪头将通过移动的微型机器人携带,而雷达底座则固定在地面上。有一条薄而柔性的光学/电缆,将扫描仪头连接到底座。扫描仪头由一个MEMS镜子和一个棒镜组成,它的重量仅为10 g,长4厘米。mems镜的光圈为1.2 mm×1.4 mm,可以扫描9°×8°的视场(FOV)。由于微型机器人和光学扫描仪头部相对于光学接收器的移动,IMU(惯性测量单元)已嵌入扫描仪头中以跟踪运动,并且已经开发出算法以重建真实点云。可移动的底圈可以每秒获取400点,并检测到最多35厘米的目标。微型机器人在移动时可以携带扫描仪的头部,并且可以在LiDAR底座生成点云。这种新的LIDAR配置可实现微型机器人的范围,映射,跟踪和缩放扫描。
摘要。在许多应用中,对可靠、小型且低成本的三维成像系统的需求很大。对于汽车应用以及安全的人机协作等应用而言,有前途的系统是基于直接飞行时间原理的光检测和测距 (激光雷达) 系统。特别是对于覆盖大视野或长距离能力,以前使用的多边形扫描仪已被微机电系统 (MEMS) 扫描仪取代。最近的发展是用单光子雪崩二极管 (SPAD) 取代通常使用的雪崩光电二极管。与其他方法相比,将这两种技术结合到基于 MEMS 的 SPAD 激光雷达系统中有望显着提高性能并降低成本。为了区分信号和背景/噪声光子,基于 SPAD 的探测器必须通过累积多个时间分辨测量来形成直方图。本文提出了一种信号和数据处理方法,该方法考虑了直方图形成过程中 MEMS 扫描仪的时间相关扫描轨迹。基于立体视觉设置中使用的已知重建过程,推导出累积时间分辨测量的估计值,从而可以将其分类为信号或噪声。除了信号和数据处理的理论推导外,还在基于 MEMS 的概念验证 SPAD 激光雷达系统中通过实验验证了实现。© 作者。由 SPIE 根据知识共享署名 4.0 国际许可发布。全部或部分分发或复制本作品需要完全署名原始出版物,包括其 DOI。[DOI:10.1117/1.JOM.2.1.011005]
摘要:电子微型化领域的重大进步已将科学兴趣转向一类新型精密设备,即微机电系统 (MEMS)。具体而言,MEMS 是指通常通过微加工技术生产的微尺度精密设备,该技术结合了机械和电气元件,用于完成通常由宏观系统执行的任务。尽管 MEMS 遍布日常生活的各个方面,但近年来,已有无数研究工作涉及 MEMS 在生物医学领域的应用,特别是在药物合成和输送、显微外科手术、微治疗、诊断和预防、人工器官、基因组合成和测序以及细胞操作和表征方面。MEMS 的巨大潜力在于其尺寸小的优势,包括易于集成、重量轻、功耗低、谐振频率高、可与电气或电子电路集成、由于大规模生产而降低制造成本以及高精度、高灵敏度和高吞吐量。在此背景下,本文旨在通过描述过去几年发展起来的制造主要材料和制造技术及其最常见的生物医学应用来概述 MEMS 技术。
定期进行。通常,作业将在一个主题(章节)的第一次讲座中布置,并在新主题开始时交。希望您的作业代表您自己的工作,尽管允许甚至鼓励小组合作。项目:将分配一个设计项目。我们鼓励您提出自己的项目主题并与讲师讨论。对于您的项目,您需要进行广泛的文献综述,分析您选择的 MEMS 设备,并将结果包含在您的项目报告中,该报告将采用 IEEE 格式。您将在课堂上进行 10-15 分钟的 Power Point 项目演示。对于研究生(ECE 6370),您需要对您选择的 MEMS 设备进行 COMSOL 仿真分析或实验性 MEMS 设备测试。结果预计将包含在您的项目报告和演示文稿的模拟结果中。对于 ECE 4370 学生,我们鼓励(但不要求)您进行 COMSOL 模拟或实验。课程项目的更多详细信息将在课堂上提供。
• 集成电路发明于 20 世纪 50 年代,如今已无处不在。微电子技术的主要优势: • 单位材料和制造成本低廉 • 可以集成组件 • 微米和纳米级出现新的可能性
3.5 如果合同终止或合同期间出现不当行为,卖方有权在合同进行阶段开具发票,并采取法律行动要求赔偿损失。4. 责任 4.1 买方或代表其行事的任何其他个人或法人,作为为其业务活动购买产品的商业用户,应对选择产品以及对其购买的文件的使用和解释、获得的结果以及由此得出的建议和行为负全部责任。 4.2 卖方仅对因产品或重大违反本协议而导致的 (i) 直接和 (ii) 可预见的经济损失负责。4.3 在任何情况下,卖方均不对以下情况负责:a) 因使用或无法使用卖方网站或产品或网站上提供的任何信息而导致的任何损害,包括但不限于偶然或间接损害(包括但不限于利润损失、业务中断和程序或信息损失);b) 因产品或其解释中的错误、遗漏或其他不准确之处而产生的任何索赔。4.4 产品中包含的所有信息均从可靠来源获得。卖方不保证此类信息的准确性、完整性、充分性或可靠性,不能保证这些信息没有错误。 4.5 卖方销售的所有产品均可在事先通知买方的情况下随时修改或替换为满足买方需求的类似产品。卖方无需承担此类修改的责任,前提是卖方确保替换的产品与最初订购的产品类似。4.6 如果经检查确认产品存在缺陷,卖方承诺在供货允许的范围内更换有缺陷的产品,且无需对人工成本、延误、造成的损失或任何其他原因进行任何形式的赔偿或补偿。自交货之日起,最长两个月内保证更换。如发生下文第 5 条所述的任何事件,则不保证更换。4.7 卖方要求说明的邮寄产品截止日期仅供参考,不作保证。如果未能满足这些期限,则不会导致任何损失或订单取消,除非卖方在未通知的情况下,在规定的期限后超过 [3] 个月的不可接受的延迟。仅在这种情况下,买方才有权要求退还其首笔定金,但不包括任何其他损失。4.8 卖方不对产品做出任何明示或暗示的保证,包括但不限于对产品可销售性和特定用途适用性的保证。尽管卖方在提供产品之前应采取合理措施筛查产品是否感染病毒、蠕虫、特洛伊木马或其他含有污染性或破坏性代码,但卖方无法保证任何产品不受感染。5.不可抗力对于因自然灾害、火灾、水灾、事故、暴乱、战争、政府干预、禁运、罢工、劳工困难、设备故障、供应商延迟交货或其他超出卖方控制范围的困难而直接或间接造成的履约延迟,卖方不承担责任,且这些困难并非卖方的过错。6.卖方知识产权保护6.1与产品相关的所有知识产权均为卖方的财产,受法国和国际版权法和公约的保护。6.2买方同意不向除其公司员工以外的任何其他方(仅限于主要用户所在国家/地区)披露、复印、复制、重新分发、转售或发布产品或其任何部分。买方有权仅将产品用于其自身内部信息目的。特别是,买方不得将产品用于以下目的:• 信息存储和检索系统;• 通过任何网络(包括任何局域网)记录和重新传输;• 用于任何分时、服务机构、公告板或类似安排或公开展示;• 将任何产品发布到任何其他在线服务(包括公告板或互联网);• 许可、租赁、销售、出售或转让产品。6.3 如果买方希望将来自产品的数据用于演示、新闻发布和任何其他项目,买方需要联系 Yole Développement 的公共关系总监(info@yole.fr)以获得官方授权并验证数据是否是最新的。作为回报,卖方将确保以合适的公共格式提供最新数据。 6.4 买方应就违反本义务的所有行为对卖方承担全部责任,无论该侵权行为是来自其员工还是买方向其发送产品的任何人,并应亲自处理任何相关诉讼,买方应承担全部相关财务后果。6.5 买方应在其公司内确定合同需求的联系人。此人将是每份新报告的接收人。此人还应负责尊重版权,并保证产品不会在公司外传播。在捆绑和年度订阅的背景下,联系人应决定买方中的哪些人有权接收允许买方访问产品的受保护链接。6.6 请注意,无论是在捆绑还是年度订阅中,合同 12 个月有效期过后,所有未选中的报告将被取消并丢失。 6.7 事实上,公司投资者、外部顾问、与第三方成立的合资企业等无法访问报告,并且应支付全额许可价格。 7. 终止 7.1 如果买方全部或部分取消订单或推迟邮寄日期,买方应赔偿卖方自买方通知此类延迟或取消之日起所产生的全部费用。这也适用于卖方因该决定而可能承担的任何其他直接或间接后果性损失。 7.2 如果一方违反这些条件或订单,非违约方可以通过挂号信向另一方发送通知,如果问题在三十 (30) 天内未得到解决,非违约方有权终止所有未决订单,而不承担任何赔偿责任。 8. 杂项 本条款和条件的所有规定均有利于卖方本身,也有利于其许可人、员工和代理人。他们每个人都有权向买方主张和执行这些规定。 根据本条款和条件发出的任何通知均应以书面形式发出。通知应在另一方收到后生效。 卖方可不时更新这些条款和条件,买方被视为已接受最新版本的条款和条件,前提是这些条款和条件已及时传达给买方。 9. 适用法律和司法管辖权 9.1 因本条款和条件或根据本条款和条件达成的任何合同/订单而产生的或与之相关的任何争议应由法国里昂商业法院解决,该法院对此类问题具有专属管辖权。 9.2 根据本条款和条件,法国法律应管辖买方和卖方之间的关系。守约方有权终止所有未完成的订单,且不承担任何赔偿责任。 8. 其他条款 本条款和条件的所有规定均有利于卖方本身,也有利于其许可人、员工和代理人。他们每个人都有权向买方主张和执行这些规定。 根据本条款和条件发出的任何通知均应以书面形式发出。通知应在另一方收到后生效。 卖方可不时更新本条款和条件,买方被视为已接受最新版本的条款和条件,前提是买方已及时通知他。 9. 适用法律和司法管辖权 9.1 因本条款和条件或根据本条款和条件达成的任何合同/订单引起的或与之相关的任何争议应由法国里昂商事法院解决,该法院对此类问题具有专属管辖权。 9.2 根据本条款和条件,法国法律应管辖买方和卖方之间的关系。守约方有权终止所有未完成的订单,且不承担任何赔偿责任。 8. 其他条款 本条款和条件的所有规定均有利于卖方本身,也有利于其许可人、员工和代理人。他们每个人都有权向买方主张和执行这些规定。 根据本条款和条件发出的任何通知均应以书面形式发出。通知应在另一方收到后生效。 卖方可不时更新本条款和条件,买方被视为已接受最新版本的条款和条件,前提是买方已及时通知他。 9. 适用法律和司法管辖权 9.1 因本条款和条件或根据本条款和条件达成的任何合同/订单引起的或与之相关的任何争议应由法国里昂商事法院解决,该法院对此类问题具有专属管辖权。 9.2 根据本条款和条件,法国法律应管辖买方和卖方之间的关系。
建模是设计 MEMS 设备的关键步骤。它需要在不制造设备的情况下估计设备性能。最初,需要进行简单的计算来验证具有给定性能的设备生产的可能性,并了解实现预期目标所需的基本参数。此外,通常进行优化以改进设计。这两个步骤都需要非常快速且足够精确的模拟方法,以缩短上市时间。在许多情况下,经典的精确 FEM 模拟不是必需的,而是使用简单的分析模型。加速度计等 MEMS 设备通常使用简单形状的元素,可以用简单的分析公式轻松描述。然而,在电容换能的情况下,分析建模变得更加复杂。通常,这些设备在线性响应范围内工作,但无法避免非均匀电场的影响。由于边缘场,使用经典平行板公式时经常低估电容。因此,需要适当的边缘场建模。在本章中,介绍了 MEMS 加速度计示例的边缘场分析建模。特定结构类型称为梳状驱动,由许多小电容器组成,可增强边缘场的影响。分析了所有轴上的加速度计。此外,由于使用细手指,Z 轴加速度计会产生不同的电场分布。因此,推导出各种条件下的解析公式。最后,将该模型与 Coventor MEMS+ 进行比较,并测量制造的结构以验证解析方法。
摘要:最近,应用于千分尺范围的添加剂制造过程(AM)过程受到宏观综合方法的影响以及数字设计和自由形式制造的吸引力。AM与常规微机械系统(MEMS)制造过程的其他步骤仍在进行中,此外,为此领域的专用设计方法的开发正在开发中。各种各样的AM过程和材料导致有关过程尝试,设置细节和案例研究的大量文档。但是,AM方法的快速和多技术发展将需要对过程的特定优势,限制和局限性进行有组织的分析。本文的目的是对微观尺度上的AM过程提供最新的总体视野,并组织和消除相关的表演,能力和决议。
关于Oqmented Oqmented是一家深层技术公司,开发和销售了用于超紧凑lbs显示器的高性能MEMS镜子,并且在3D级传感解决方案中用于移动和固定应用程序中。独特的Lissajous扫描模式与获得专利的真空包装泡泡MEMS®技术以及专有的电子产品和软件相结合,在消费者和其他各个行业中启用了新产品类别。将于11月9日至11日在加利福尼亚州圣克拉拉的Awe USA 2021举行。关于Vsquared Ventures Vsquared Ventures是位于慕尼黑的B2B Deep Deep的早期VC。在欧洲领先的技术企业家和家庭办事处的支持下,Vsquared Ventures拥护技术来推进社会。该基金投资于几个尖端的技术领域,例如新空间,量子计算,新材料和边境硬件,AI和机器人技术。过去的创始投资包括ISAR航空航天和IQM量子计算机。关于Salvia Salvia Gmbh的关于赫尔穆特·杰格尔(Helmut Jeggle)创立和经营的投资公司。Salvia通过其资本,专业知识和广泛的网络协助创新公司。位于Holzkirchen(慕尼黑)的私人投资公司的重点是在深度技术和科学领域的公司,这些公司正在推动可持续变化,并可以向世界展示前进的方向。该公司的目的是创建长期,合适和“健康”的价值观。公司联系人:
摘要:电击环境中MEMS的可靠性是一个复杂的领域,涉及结构动力学,断裂力学和系统可靠性理论等。随着在汽车,物联网,航空航天和其他恶劣环境中使用MEMS的增长,需要深入了解电击环境中MEMS的可靠性。尽管有许多文章的贡献,这些文章概述了MEMS的可靠性,但迄今为止,该审查论文特别关注MEMS的可靠性研究。This paper reviews studies which examine the reliability of MEMS in shock environments from 2000 to 2020 in six sub-areas, which are: (i) response model of microstructure, (ii) shock experimental progresses, (iii) shock resistant microstructures, (iv) reliability quantification models of microstructure, (v) electronics- system-level reliability, and (vi) the coupling phenomenon of shock with其他因素。本文围绕电击环境中MEMS可靠性的概述填写差距。通过这六个子区域的框架,我们提出了一些可能值得关注的方向来进行未来的研究。