CSA 加拿大标准协会 DEC 环境保护部 DOD 国防部 DOE 能源部 DOT 交通部 ECA 排放控制区 ECO 爱迪生 Chouest 海上公司 EIA 美国能源信息署 EPA 环境保护署 EPC 工程、采购和施工 ESD 紧急关闭 FAQ 常见问题 FERC 联邦能源管理委员会 FRA 火灾风险评估 FSA 设施安全评估 FSO 设施安全官 FSP 设施安全计划 GE 通用电气 GLMRI 大湖海事研究所 HazID 危害识别 HAZOP 危害和可操作性 HECO 夏威夷电力公司 HFO 重质燃料油 HGIM 哈维海湾国际海运有限责任公司 HI Gas 夏威夷天然气公司 HQ 总部 HSE 健康、安全和环境 HTW 人为因素、培训和值班(IMO 小组委员会) IACS 国际船级社协会 IAPH 国际港口协会 IGC Code 液化石油气运输船舶建造与设备国际规则散装气体 IGF 规则 使用气体或其他低闪点燃料的船舶国际安全规则 IEC 国际电工委员会 IMO 国际海事组织 ISM 规则 国际安全管理规则 ISO 国际标准化组织 kW 千瓦 LGCNCOE 液化气体运输船国家专业中心 LNG 液化天然气 LSMGO 低闪点
附件 5 MEPC.279(70) 号决议(2016 年 10 月 28 日通过) 2016 年压载水管理系统批准指南(G8) 海上环境保护委员会, 忆及《国际海事组织公约》第 38(a) 条关于防止和控制船舶造成海洋污染的国际公约赋予海上环境保护委员会的职能, 还忆及 2004 年 2 月举行的国际船舶压载水管理大会通过了《2004 年国际船舶压载水和沉积物控制和管理公约》(《压载水管理公约》)以及四项会议决议, 注意到《压载水管理公约》附则第 D-3 条规定,用于遵守公约的压载水管理系统必须经主管机关批准,同时考虑到本组织制定的导则, 还注意到委员会通过了《压载水管理系统批准导则》(《导则(G8)》)的 MEPC.125(53) 号决议,以及委员会通过了《导则(G8)》的修订版的 MEPC.174(58) 号决议, 还注意到委员会通过了《导则(G8)》的 MEPC.174(58) 号决议,根据所获得的经验,不断审查《导则(G8)》, 忆及委员会第六十八届会议商定的《压载水管理公约实施路线图》中所载的对先行者不进行惩罚的规定(MEPC 68/WP.8,附件 2), 注意到本组织在船用产品型式认可证书有效性方面的既定做法(MSC.1/Circ.1221),即型式认可证书本身对在相关型式认可有效期内制造的、已接受并安装在船上的现有压载水管理系统的运行有效性没有影响证书到期后,该系统无须续展或更换, 在其第 70 届会议上,审议了审查指南(G8)会间工作组的结果, 1 通过本决议附件所载的 2016 年压载水管理系统批准指南(G8)(2016 年指南(G8)); 2 同意根据应用经验不断审查 2016 年指南(G8); 3 建议主管机关在批准压载水管理系统时尽快应用 2016 年指南(G8),但不迟于 2018 年 10 月 28 日;
附件 5 MEPC.279(70) 号决议(2016 年 10 月 28 日通过) 2016 年压载水管理系统批准指南(G8) 海上环境保护委员会, 忆及《国际海事组织公约》第 38(a) 条关于防止和控制船舶造成海洋污染的国际公约赋予海上环境保护委员会的职能, 还忆及 2004 年 2 月举行的国际船舶压载水管理大会通过了《2004 年国际船舶压载水和沉积物控制和管理公约》(《压载水管理公约》)以及四项会议决议, 注意到《压载水管理公约》附则第 D-3 条规定,用于遵守公约的压载水管理系统必须经主管机关批准,同时考虑到本组织制定的导则, 还注意到委员会通过了《压载水管理系统批准导则》(《导则(G8)》)的 MEPC.125(53) 号决议,以及委员会通过了《导则(G8)》的修订版的 MEPC.174(58) 号决议, 还注意到委员会通过了《导则(G8)》的 MEPC.174(58) 号决议,根据所获得的经验,不断审查《导则(G8)》, 忆及委员会第六十八届会议商定的《压载水管理公约实施路线图》中所载的对先行者不进行惩罚的规定(MEPC 68/WP.8,附件 2), 注意到本组织在船用产品型式认可证书有效性方面的既定做法(MSC.1/Circ.1221),即型式认可证书本身对在相关型式认可有效期内制造的、已接受并安装在船上的现有压载水管理系统的运行有效性没有影响证书到期后,该系统无须续展或更换, 在其第 70 届会议上,审议了审查指南(G8)会间工作组的结果, 1 通过本决议附件所载的 2016 年压载水管理系统批准指南(G8)(2016 年指南(G8)); 2 同意根据应用经验不断审查 2016 年指南(G8); 3 建议主管机关在批准压载水管理系统时尽快应用 2016 年指南(G8),但不迟于 2018 年 10 月 28 日;
超过 90% 的世界贸易是通过海上运输进行的。空气污染、温室气体 (GHG) 排放和水下辐射噪声是这种国际航运的意外副产品。航运业意识到提高能源效率和减少温室气体排放的必要性。2018 年,国际海事组织 (IMO) 通过了一项关于减少船舶温室气体排放的初步战略 1 。这证实了 IMO 致力于减少国际航运的温室气体排放,并作为紧急事项,在本世纪尽快逐步淘汰这些排放。比利时政府希望通过“可持续航运计划”(本报告附件 B 中复制)帮助船东为航运业迈向更环保、零二氧化碳和数字化的未来。该计划符合国际目标,即到 2050 年将航运业的二氧化碳 (CO 2 ) 排放量至少减少一半。除了温室气体之外,国际海事组织还采取了逐步减少氮氧化物 (NO x )、硫氧化物 (SO x ) 和颗粒物 (PM) 的方法,以防止船舶造成空气污染 2 。为了帮助保护海上野生生物,国际海事组织的工作包括减少船舶的水下噪音 3 。2014 年,国际海事组织发布了减少商业航运水下噪音的非强制性指南,以解决对海洋生物的不利影响 [IMO MEPC,2014]。理想情况下,采取减少温室气体排放的措施也会减少水下噪音,但两者之间的联系尚未得到明确证明。在比利时联邦卫生、食品链安全和环境公共服务部门 Dienst Marien Milieu (DMM) 委托的这项研究中,我们研究了减少温室气体排放以及水下噪音的方案,重点关注比利时航运船队。选择以下方法:1 概述比利时船队中的典型船型,包括货船、油轮、渔船、挖泥船和海上支援船。2 对这些典型船型的当前水下辐射噪音和排放(CO 2 、NO x 、SO x 、PM)进行全球分析。3 概述可能的排放和水下辐射噪音减少措施。4 分析减少水下船舶噪音的措施对提高能源效率和减少温室气体排放的潜在协同效益。作为本研究的第 2 部分,TNO 研究了通过所谓的北海地区“慢速航行”运营方案减少空气排放和水下噪音的潜力,在该方案中,船舶的最大速度受到限制,以节省能源并减少排放,参见 [de Jong and Hulskotte,2020]。