综合发育生物学采用工程方法来理解多细胞性,目标从概括开发到建筑合成生物。当前的方法包括工程多细胞模式,控制分化以及在模型系统中实施合作的细胞行为。合成生物学工具可以通过遗传回路来实现这些追求,从而推动对任意刺激的自定义反应,启用正交信号通道的合成受体以及光或药物诱导的系统,这些系统可以精确地对细胞功能进行空间和时间控制。小鼠胚胎干细胞(MESC)提供了一个经过良好的遗传性多能底盘,用于提出合成开发问题,但是,MESC中现有的合成生物学工具的表征最少,我们缺乏基因工具包来快速迭代迭代工程的合成开发工作流程。在这里,我们开始通过表征小分子和细胞接触诱导的系统来解决这一挑战,以在MESC的基因表达和分化中表达。我们表明,小分子和细胞接触诱导系统可靠地工作,以控制任意基因有效载荷的表达。此外,我们表明这些系统可以将MESC直接分化为神经元。这些系统中的每一个都可以自行或组合使用,为研究发展原理的许多可能性高精度。简介
转录增强子能够对后生动物的基因表达进行精确的时空控制。组蛋白 H3 赖氨酸 4 (H3K4me1) 的单甲基化富集是转录增强子的主要染色质特征。赖氨酸 (K) 特异性脱甲基酶 1A (KDM1A,也称为 LSD1) 是一种 H3K4me2/me1 脱甲基酶,可在小鼠胚胎干细胞 (mESC) 分化过程中使干细胞增强子失活。然而,其在未分化 mESC 中的作用仍不清楚。在这里,我们表明 KDM1A 在未分化和谱系定向细胞中都积极维持最佳增强子状态。KDM1A 占据了未分化 mESC 中的大部分增强子。增强子处的 KDM1A 水平与其底物 H3K4me2、H3K27ac 和增强子处的转录呈现明显的正相关性。在缺乏 Kdm1a 的 mESC 中,这些增强子中的大部分获得了额外的 H3K4 甲基化,同时伴有 H3K27 乙酰化增加以及增强子 RNA (eRNA) 和靶基因表达增加。在有丝分裂后的神经元中,KDM1A 的缺失会导致神经元活动依赖性增强子和基因的过早激活。总之,这些结果表明 KDM1A 是一种多功能的增强子调节器,并充当变阻器,通过平衡增强子处的 H3K4 甲基化来维持最佳增强子活性。
胚胎干细胞(ESC)来自胚泡的内部细胞质量,类似于该组织的功能,但缺乏形成所有胚外结构的能力。MESC是瞬态细胞群,表达了2细胞(2C)胚胎的高水平转录本特征,并被鉴定为“ 2细胞类似细胞”(2clcs)。先前的研究表明,在重新引入早期胚胎后,2CLC可以有助于胚胎和胚外组织。大约1%的MESC从多能MESC动态过渡到2Clcs。然而,哺乳动物胚胎的稀缺性对整体细胞的分子表征构成了重要挑战。迄今为止,以前的研究探索了将多能细胞重编程为全能细胞的各种方法。虽然对维持ES多能性的分子调节网络有很好的了解,但多能ESC将重编程重新编程为整体细胞的过程以及对全能调节的相关分子机制仍然很熟悉。本综述综合了对ESC重编程为2CLC的调节途径的最新见解,探索了由转录调节剂,小分子和表观遗传变化调节的分子机制。目的是为研究人员的领域构建一个理论框架。
O- GlcNAC转移酶OGT与所有三种哺乳动物TET甲基二偶联酶都与所有三种哺乳动物Tet甲基二加氧酶进行牢固相互作用。我们20在这里表明,小鼠胚胎干细胞中的OGT基因(MESC)的缺失导致21种tet产物5-羟基甲基胞嘧啶(5HMC)在构体和杂色和异杂体中均具有22个同时降低Tet suisptrate 5-mettrate sistratrate 5-ettratrate contratation(5-hmc)。MESC设计了23,以消除TET1-OGT相互作用,同样显示出全基因组的降低5MC。DNA在24个OGT缺陷型细胞中的甲基化伴随着可转移元件(TES)的抑制,主要位于25个异染色质中,TE表达的这种增加有时会伴随着增加的26个基因和外显子的CIS表达增加。因此,TET-OGT相互作用通过限制跨TET活性基因组来阻止异染色质中DNA脱甲基化和27 TE表达。我们建议OGT保护28个基因组免受DNA降压降低和异染色质完整性的损害,从而防止在癌症,自身免疫性疾病,细胞衰老和衰老中观察到的TE 29表达的异常增加。30
长时间存储射击TM(LDSS)基本能源科学办公室(BES)电力办公室(OE)能源效率和可再生能源办公室(EERE)制造和能源供应链办公室(MESC)技术过渡办公室(OTT)
抽象的microRNA与Argonaute蛋白相关,形成了MicroRNA诱导的沉默复合物(MIRISC),以在转录后抑制靶基因表达。尽管microRNA是哺乳动物细胞分化中的关键调节剂,但我们对在发育过程中如何调节microRNA机械(例如mirisc)的理解仍然受到限制。我们先前表明,TRIM71抑制一种Argonaute蛋白AGO2的产生对于小鼠胚胎干细胞(MESC)自我更新至关重要(Liu等,2021)。在这里,我们表明,在哺乳动物中的四种Argonaute蛋白中,AGO2是MESC中主要受过的argonaute蛋白。此外,在多能性中,除了TRIM71介导的AGO2的调节(Liu等,2021),Mir182/Mir183还抑制AGO2。对这种微区介导的抑制作用的特异性抑制会导致干性缺陷,并通过let-7 microRNA途径加速分化。这些结果揭示了microRNA机械上的microRNA介导的调节电路,这对于维持多能性至关重要。
细胞和分子工具 - 使用CRISPR生成生物标志物和工具来表征OGT变体并预测其致病性。OGT-CDG如何改变MESC系中的细胞转录组和神经元分化?OGT和OGA如何在O-GLCNAC稳态中受到调节?OGT/OGA mRNA或蛋白质比率可以用作OGT-CDG诊断的生物标志物吗?
印记的 Dlk1-Dio3 结构域包含发育基因 Dlk1 和 Rtl1,它们在不同类型的细胞中在母体染色体上处于沉默状态。在此亲本染色体上,该结构域的印记控制区激活多顺反子,产生 lncRNA Meg3 和许多 miRNA(Mirg)和 C/D-box snoRNA(Rian)。尽管 Meg3 lncRNA 位于核内并与母体染色体相关,但它是否控制顺式基因抑制尚不清楚。我们创建了携带异位 poly(A) 信号的小鼠胚胎干细胞 (mESC),从而降低了多顺反子上的 RNA 水平,并生成了 Rian-/- mESC。在 ESC 分化后,我们发现 Meg3 lncRNA(而不是 Rian)是母体染色体上 Dlk1 抑制所必需的。通过 CRISPR 介导的父系 Meg3 启动子去甲基化获得的双等位基因 Meg3 表达导致双等位基因 Dlk1 抑制,并导致 Rtl1 表达丧失。lncRNA 表达还与 Meg3 5' 侧的 DNA 低甲基化和 CTCF 结合相关。使用 Capture Hi-C,我们发现这会产生拓扑关联域 (TAD) 组织,使 Meg3 靠近母系染色体上的 Dlk1。Meg3 对基因抑制和 TAD 结构的需要可能解释了人类 DLK1-DIO3 基因座处异常的 MEG3 表达如何与印记障碍相关。
摘要 印记的 Dlk1-Dio3 结构域包含发育基因 Dlk1 和 Rtl1 ,它们在不同细胞类型的母体染色体上处于沉默状态。在该亲本染色体上,该结构域的印记控制区激活多顺反子,从而产生 lncRNA Meg3 和许多 miRNA( Mirg )和 C / D-box snoRNA( Rian )。尽管 Meg3 lncRNA 位于核内并与母体染色体相关,但它是否控制顺式基因抑制尚不清楚。我们创建了携带异位 poly(A) 信号的小鼠胚胎干细胞 (mESC),从而降低了多顺反子上的 RNA 水平,并产生了 Rian − / − mESC。在 ESC 分化后,我们发现 Meg3 lncRNA(而不是 Rian )是母体染色体上 Dlk1 抑制所必需的。通过 CRISPR 介导的父系 Meg3 启动子去甲基化获得的双等位基因 Meg3 表达导致双等位基因 Dlk1 抑制,并导致 Rtl1 表达丧失。lncRNA 表达还与 Meg3 5′ 侧的 DNA 低甲基化和 CTCF 结合相关。使用 Capture Hi-C,我们发现这会产生拓扑关联域 (TAD) 组织,使 Meg3 靠近母系染色体上的 Dlk1。Meg3 对基因抑制和 TAD 结构的需要可能解释了人类 DLK1-DIO3 基因座处异常的 MEG3 表达如何与印记障碍相关。
图1。通过MESC中的刺激诱导的插入诱变。(a)击球策略的示意图。通过Cas9 RNP的hit-trap供体和基因组的同时裂解会导致靶向捕获。 整合后,基因陷阱盒会导致靶基因启动子的截短蛋白和GFP的表达。 选择盒子由组成型SV40启动子表达紫霉素的抗性基因。 ATS序列:GGTATGTCGGGAACCTCTCCAGG; SA,剪接受体; IRES,内部核糖体入口网站; PA,聚腺苷酸信号。 (b)在杀击球中选择呼吸霉素后MESC克隆的代表性微观图像。 红色箭头分别指示凋亡克隆(顶部),GFP-生存的克隆(中间)和GFP阳性幸存的克隆(底部)。 比例尺,50 µm。 (c)GFP阳性克隆的PCR基因分型证实了HPRT基因座的hit-trap供体的正确整合。 5 /3J,5' /3'交界处。 (d,e)针对HPRT基因座(TH1-1,TH2-4和TH3-5)的hit-trap克隆的Western印迹和QPCR分析,并用微管蛋白作为负载对照。 错误条显示了S.D. 来自三个技术重复。 使用学生的未配对t检验来计算显着性:** p <0.01。通过Cas9 RNP的hit-trap供体和基因组的同时裂解会导致靶向捕获。整合后,基因陷阱盒会导致靶基因启动子的截短蛋白和GFP的表达。选择盒子由组成型SV40启动子表达紫霉素的抗性基因。ATS序列:GGTATGTCGGGAACCTCTCCAGG; SA,剪接受体; IRES,内部核糖体入口网站; PA,聚腺苷酸信号。(b)在杀击球中选择呼吸霉素后MESC克隆的代表性微观图像。红色箭头分别指示凋亡克隆(顶部),GFP-生存的克隆(中间)和GFP阳性幸存的克隆(底部)。比例尺,50 µm。(c)GFP阳性克隆的PCR基因分型证实了HPRT基因座的hit-trap供体的正确整合。5 /3J,5' /3'交界处。(d,e)针对HPRT基因座(TH1-1,TH2-4和TH3-5)的hit-trap克隆的Western印迹和QPCR分析,并用微管蛋白作为负载对照。错误条显示了S.D.来自三个技术重复。使用学生的未配对t检验来计算显着性:** p <0.01。