AB Assembly Bill ADC Alternative Daily Cover APCD Air Pollution Control District AQMD Air Quality Management District ARB Air Resources Board ATSDR Agency for Toxic Substances and Disease Registry BAAQMD Bay Area Air Quality Management District BMP Best Management Practice CAAQS California Ambient Air Quality Standards Cal/OSHA California Occupational Safety and Health Administration (now the California Department of Industrial Relations, Division of Occupational Safety and Health) CalEPA California Environmental Protection Agency加利福尼亚州循环和资源回收局CES CALENVIROSCROSCER CFC CFC氯氟化碳鳕鱼鳕鱼化学氧需求CTMSR化学处理的金属切碎机残留CUPA CUPA CUPA CUPA认证统一计划委员 GIS Geographic Information System HVAC Heating, Ventilation, and Air Conditioning HWTS Hazardous Waste Tracking System IARC International Agency for Research on Cancer IGP Industrial General Permit ISRI Institute of Scrap Recycling Industries LFM light fibrous material mg/kg milligrams per kilogram mg/L milligrams per liter MRSH Materials that Require Special Handling MSR metal shredder residue n number of samples analyzed NAAQS国家环境空气质量标准
秉承舒勒公司的悠久传统,《金属成型手册》以简洁易懂的方式介绍了金属成型技术的科学基础。因此,本书使该领域的理论和实践易于教学和实际实施。第一本舒勒“金属成型手册”出版于 1930 年。1966 年的最后一版已经修订了四次,被翻译成多种语言,并在全球范围内获得了一致好评。在过去的 30 年里,成型技术领域已经通过许多创新发生了根本性的变化。新的成型技术和扩展的产品设计可能性已经开发和引入。本《金属成型手册》已进行根本性修订,以考虑到这些技术变化。它既是一本教科书,也是一本参考书,其前几章主要介绍成形技术和压力机设计的基本过程。本书随后对金属板材成形、切割、液压成形和固体成形等主要领域进行了深入研究。大量相关计算为金属成形技术领域提供了最先进的解决方案。在提供技术解释时,特别强调了易于理解的图形可视化。所有插图和图表均使用标准化的功能导向颜色代码系统进行编制,以帮助读者理解。真诚希望这本手册不仅有助于传播专业知识,而且还能促进生产工程、生产线建设、教学和研究领域之间的对话。
发现石墨烯对2D材料引起了极大的兴趣,该材料呈现出具有高各向异性和可调节能带结构的超薄分层结构。有趣的是,它为开发2D材料家族的开发打开了大门,其中包括不同类别的2D材料。在其中,出现了过渡金属二甲化合物(TMD)和过渡金属碳化物MXENES(TMC)。tmds具有独特的分层结构,低成本,由地球丰富的元素组成,但是它们的电子电导率差,循环性较差,其在电化学测量过程中的结构和形态变化阻碍了其实际使用。最近,TMC MXENES在2D材料世界中引起了人们的关注,但是重新打包和聚合的问题限制了它们在大规模的能量转换和存储中的直接使用。为了应对这些挑战,基于导电TMCS MXENES和电化学活性TMD的杂种结构已成为有前途的解决方案。但是,了解异质结构材料中的固体/实心界面仍然是一个挑战。为了解决这个问题,高容量,低扩散屏障和良好的电子结构率的2D单个成分晶体非常寻求。过渡金属碳 - chalcogenides(TMCC)的出现提供了潜在的解决方案,因为这些2D纳米片由TM 2 x 2 C组成,其中TM代表过渡金属,X是S或SE和C原子。这种新的2D材料类是一种补救措施,避免了与异质结构中经常遇到的固体/实心接口相关的挑战。本综述着重于TMCC的最新发展,包括它们的合成策略,表面/接口工程以及电池,水分拆分和其他电催化过程中的潜在应用。还讨论了TMCC设计对电化学能量转换和存储的挑战和未来观点。
I.简介添加剂制造(也称为3D打印)是一项技术,可从材料(无论是基于聚合物还是金属)逐层生产三维零件。该方法依赖于要传输到机器然后构建组件的数字数据文件。金属粉末床融合是一种增材制造技术,它使用高功率的Ytterbium纤维激光器将精细的金属粉末融合在一起,从而创建功能性3维零件。该过程是数字驱动的,直接从切成薄片的3D CAD数据中。对于每片CAD数据,整个构建板上都沉积了薄薄的细金属粉末,然后粉末的选定区域被激光精确地融化。此过程被重复逐层构建,直到构建完成为止。添加剂制造的早期采用者包括高端汽车,航空航天和消费品客户。在牙齿,医疗和工具中使用越来越多的行业的应用程序正在增长。Renishaw拥有提供医疗保健解决方案的专门团队。
密钥亮点1。混合制造方法:Karunakaran博士演讲的中心主题是混合方法,结合了添加剂和减法制造。他详细介绍了如何有效地将电子束技术与传统的加工方法配对,以增强制造能力。2。材料注意事项:对适合EB杂种制造的材料类型进行了深入的讨论,强调了在适应各种合金和金属方面的灵活性和多样性。3。应用和案例研究:Karunakaran博士分享了几个案例研究,在这些案例研究中已成功应用EB混合制造。这些包括航空航天组件,医疗植入物和汽车零件,展示了该技术的广泛适用性。4。技术创新和挑战:演讲还涵盖了EB技术的最新进步,包括提高光束控制和效率。挑战,例如热应力和材料特性,以及潜在的解决方案。5。未来的趋势和研究机会:强调了各个工业领域的EB混合制造的未来范围,鼓励参与者探索该领域的研发机会。
EspíritoSanto联邦研究所作为职业和技术教育的卓越机构,于1909年通过EspíritoSanto Santo Artefice学徒学院的官员开始活动。该教育机构在其轨迹上发生了几次变化,其中包括来自联邦政府内部结构化的教育政策的物理,行政和教学结构的许多变化,并感知了必要的教学变化,以应对教学关系的新挑战。这样的变化导致了新的机构身份,即:Vitória技术学校-ETV(1942); EspíritoSanto -Etfes联邦技术学院(1945年);联邦EspíritoSanto技术教育中心-Cefetes(1999),以及; EspíritoSanto的联邦教育,科学和技术研究所(IFES)于2008年。
1 英国伦敦东伦敦大学卫生、体育与生物科学学院联合与公共卫生系,2 英国伦敦约克圣约翰大学公共卫生系,3 英国吉林汉姆梅德韦 NHS 基金会信托研究与创新系,4 卡塔尔多哈哈马德·本·哈利法大学科学与工程学院可持续发展部,5 美国弗吉尼亚州布莱克斯堡弗吉尼亚理工大学化学系,6 美国图森亚利桑那大学化学与生物化学系,7 尼日利亚伊巴丹伊巴丹大学科学学院化学系,8 美国图森亚利桑那大学系统与工业工程系,9 美国斯塔克维尔密西西比州立大学兽医学院比较生物医学科学系