使用白色入射中子源,通过使用分段液体闪烁体探测器阵列检测仅 γ 射线和 n - γ 符合,测量了 Q = 4.4398 MeV 12 C( n , n ′ γ ) 截面。虽然这里使用的 n - γ 技术更普遍地适用于各种中子散射测量,但仅 γ 技术已成功应用于此反应,以利用此检测系统的精确时间分辨率和高效率,从反应阈值到 16 MeV 入射中子能量,获得具有前所未有的统计精度和总不确定度 < 2% 的结果,清楚地解决了此反应中许多以前不为人所知的特征。仅 γ 和 n - γ 结果在本研究涵盖的大部分入射能量范围内彼此一致,从而为未来测量的 n - γ 技术提供了验证,尽管两个结果之间以及与 ENDF/B-VIII.0 核数据评估之间存在显著差异。这些差异在最近评估的 6.5 MeV 以下能量范围内尤其明显,在 14 MeV 附近也观察到了类似于其他 12 C + n 反应通道的“锯齿”状特征。本文提供了仅 γ 和 n - γ 结果,并进行了彻底的协方差推导。
二硫化钼(MOS 2)在菌株下具有许多有趣的证券和可能的技术应用。最近的一项实验研究检查了应变对单层MOS 2带对轻度弯曲石墨表面的带隙的影响,报告说,在双轴应变下,泊松比为0.44,带隙以400 MeV/%的速率降低。在这项工作中,我们使用广义梯度近似(GGA)PBE,混合功能性HSE06进行了密度功能理论(DFT)计算,并使用PBE波函数(G0W0@PBE)使用GW近似值进行了多体扰动理论。对于未经培训的单层,我们发现了理论与实验之间的带段的标准水平一致。对于实验泊松比的双轴菌株,我们发现,带隙以63 MeV/%菌株(PBE),73 MeV/%菌株(HSE06)和43 MeV/%菌株(G0W0@PBE)的速率降低,这些速率比实验率小。我们还发现,PBE预测不同的泊松比为0.25的速率(90 meV/%菌株)。自旋轨道校正(SOC)对间隙或其应变依赖性几乎没有影响。理论和实验之间的强烈分歧可能反映了底物对间隙应变依赖性的出乎意料的强烈影响。此外,我们观察到在应变下从直接到间接带隙的过渡,并且(在相等的双轴应变为10%)中,半导体到金属转变,与以前的理论工作一致。
摘要:使用三角大学核实验室中的中子束5至27 MeV,使用微琴探测器测量塑料闪烁体EJ-260的非线性能量响应。第一阶和二阶Birks的常数是从数据中提取的,发现为𝑘=(8。70±0。93)×10 - 3 g / cm 2 / mev和𝑘=(1。< / div>42±1。 00)×10-5(g / cm 2 / meV)2。 该结果涵盖了一个独特的能量范围,该能量范围与反应器反向β衰变检测器中的快速中子背景具有直接相关性。 这些测量结果将改善塑料闪烁体检测器的能量非线性建模。 特别是,更新的能量响应模型将改善基于Chandler反应器中微子检测器技术的检测器的快速中子建模。42±1。00)×10-5(g / cm 2 / meV)2。该结果涵盖了一个独特的能量范围,该能量范围与反应器反向β衰变检测器中的快速中子背景具有直接相关性。这些测量结果将改善塑料闪烁体检测器的能量非线性建模。,更新的能量响应模型将改善基于Chandler反应器中微子检测器技术的检测器的快速中子建模。
我们使用半经典方法研究了通过分子阳离子对电子的激光辅助解离重组的过程。在反应球以外的区域中,对组合激光和库仑领域中的电子运动经过经典处理。在球体内忽略了激光效果,重组概率是从针对无激光过程计算的量子机械横截面获得的。在强度2.09 GW / cm 2和波长22的场中,进行了特定的计算,以进行H + 2的分离重组。8μm。在1 meV高于1 MEV的能量区域中,由于库仑聚焦效果,横截面显着增强。 还研究了由于电子捕获到Rydberg状态而引起的间接过程的影响。 尽管由于领域的影响,rydberg共振被洗净,但它们的影响显着,显着地影响了分离性重组横截面的大小。8μm。在1 meV高于1 MEV的能量区域中,由于库仑聚焦效果,横截面显着增强。还研究了由于电子捕获到Rydberg状态而引起的间接过程的影响。尽管由于领域的影响,rydberg共振被洗净,但它们的影响显着,显着地影响了分离性重组横截面的大小。
检测比MEV更重的轴线暗物质受到其小波长的阻碍,这限制了传统实验的有用体积。可以通过直接检测中等激发来避免此问题,后者的〜MEV - EV能量与检测器的大小是解耦的。我们表明,对于磁场内的任何目标,电磁轴轴的吸收率由介电函数确定。结果,可以将以前用于子GEV暗物质搜索的候选目标重新定义为宽带轴测检测器。我们发现,具有与最近测量值相当的噪声水平的kg yr暴露足以探测实验室测试目前未探索的参数空间。降低噪声仅减少几个数量级,才能对〜10 MeV - 10 eV质量范围内的QCD轴敏感。
当前的工作旨在计算六个样本的伽马射线屏蔽系数。样品为65b 2 O 3 .20bi 2 O 3 .10Al 2 O 3。(5-X)MGO。XMNO(0≤x≤1mol%)。使用熔体淬火方法准备了这些样品。该研究测量MAC(质量衰减系数)和线性衰减系数(μm,μ)。它还计算半价值层,十值层(TVL)和平均自由路径(MFP)。使用PHY-X/PSD和XCOM程序进行计算,以1keV-100GEV为单位。该研究讨论了将结果彼此比较,表明了良好的一致性。该研究显示了许多结果,例如何时能量高于10 MEV。低光子能区域中有许多峰(<0.1 MEV)。具有最大MNO组成S6的玻璃样品显示了M-,L-和K-吸收光电边缘的许多峰。PHY-X/PSD和XCOM软件产生的测量值显示出良好的一致性。另外,HVL与材料密度之间存在负相关。此外,随着光子的入射能增加到5 MeV,MFP和HVL值开始较低,不断增加。超过5 MeV,具有能量,HVL和MFP轻轻掉落。半价值层值随密度和MNO内容的增加而下降。
摘要:提出并实施了两种在掺铒碲酸盐玻璃中制作通道波导的方法。在第一种方法中,通过特殊的硅掩模将 1.5 MeV 和 3.5 MeV 能量的 N + 离子以不同的通量注入玻璃样品来制作通道波导。以 1.0 × 10 16 离子/cm 2 的通量注入的波导工作波长高达 980 nm,并显示出铒离子的绿色上转换。在第二种方法中,使用 11 MeV C 4+ 离子微束在 Er 3+ :TeO 2 W 2 O 3 玻璃中直接写入通道波导,通量范围为 1·10 14 –5·10 16 离子/cm 2 。波导在单模状态下工作,最高可达 1540 nm 电信波长。通过逐步热退火,传播损耗从辐射波导时的 14 dB/cm 降低至 λ = 1400 nm 时的 1.5 dB/cm。
高性能激光驱动辐射源是研究高能量密度物质、利用 kJ PW 激光系统进行对产生和中子产生的研究的重点。在这项工作中,我们提出了一种高效方法,在直接激光加速 (DLA) 电子与几毫米厚的高 Z 转换器相互作用时产生超高通量、高能轫致辐射。在中等相对论强度的亚皮秒激光脉冲与用纳秒激光脉冲辐照低密度聚合物泡沫获得的近临界密度长尺度等离子体相互作用时,产生了能量高达 100 MeV 的直接激光加速电子定向束。在实验中,观察到了通过光核反应产生的钽同位素,阈值能量高于 40 MeV。使用 Geant4 Monte Carlo 程序,以测量的电子能量和角分布作为输入参数,对 180 Ta 至 175 Ta 同位素记录产量的轫致辐射谱进行了表征。结果表明,当直接激光加速电子与钽转换器相互作用时,会产生平均光子能量为 18 MeV 的定向轫致辐射,在巨偶极共振(GDR)及以上(≥ 7.5 MeV)的能量范围内每次激光发射会产生 ~2 · 10 11 个光子。这会产生 ~6 × 10 22 sr − 1 · s − 1 的超高光子通量,并将聚焦激光能量转换为高能轫致辐射,转换效率达到创纪录的 2%。
AFD Agence Française de Développement AfDB African Development Bank CDAP Community Development Action Plan CGV Chief Government Valuer EIA Environmental Impact Assessment EPC Engineering, Procurement and Construction ERT Energy for Rural Transformation EXIM Export Import FAT Factory Acceptance Test GERP Grid Extension and Reinforcement Project GoU Government of Uganda HPP Hydro Power Project HSE Health Safety and Environment HV High Voltage IDA International Development Association IFMS Integrated财务管理系统IPC临时支付证书JICA JAPAY国际合作局KFWKREDITANSTALTFürWiederaufbauKV Kilo Volts LV低压MDAS部委,部门和机构MEMD能源和矿产部部Memd部门M.Lhud部长M. MEO MERANDA的MEON MERANDE MERANDAS MELANDAS MERANAD MED MEV MEV MED MEV MED MEW MEV M.第二个国家发展计划3 OE所有者的工程师PAPS项目PBS计划预算系统PDHS身体流离失所的家庭PIP公共投资计划PPDA公共采购和资产的消除PPP PPP公私合作伙伴关系RAP RESETTERPENT RESETTERPHER RESETTEMPHER RESETTEMPHER RESETTEMENT RESETTEMENT RESETTEMENT ACRETER RESETT ARPANEM
高性能激光驱动辐射源是研究高能量密度物质、利用 kJ PW 激光系统进行对产生和中子产生的研究的重点。在这项工作中,我们提出了一种高效方法,在直接激光加速 (DLA) 电子与几毫米厚的高 Z 转换器相互作用时产生超高通量、高能轫致辐射。在中等相对论强度的亚皮秒激光脉冲与用纳秒激光脉冲辐照低密度聚合物泡沫获得的近临界密度长尺度等离子体相互作用时,产生了能量高达 100 MeV 的直接激光加速电子定向束。在实验中,观察到了通过光核反应产生的钽同位素,阈值能量高于 40 MeV。使用 Geant4 Monte Carlo 程序,以测量的电子能量和角分布作为输入参数,表征了从 180 Ta 到 175 Ta 的同位素记录产量的轫致辐射谱。结果表明,当直接激光加速电子与钽转换器相互作用时,会产生平均光子能量为 18 MeV 的定向轫致辐射,在巨偶极共振(GDR)及以上(≥ 7.5 MeV)的能量范围内每次激光发射会产生 ~2 · 10 11 个光子。这会产生 ~6 × 10 22 sr − 1 · s − 1 的超高光子通量,并且聚焦激光能量转化为高能轫致辐射的转换效率达到创纪录的 2%。