A CR,CRC或MLFS速率使用ELN 2022标准确定。AE,不利事件; AUC(0 last),浓度时间曲线下的面积从零时间到给药后最后一个可量化浓度的时间; AUC(tau),浓度时间曲线下的面积在给药间隔内; Aza,Azacytidine; Bcl-2,B细胞淋巴瘤2; BM,骨髓; C最大,最大血浆浓度; CR,完全缓解; CRC,复合完全缓解; CRH,完全血液学恢复完全缓解; CRI,完全缓解血液学恢复; DLT,剂量限制毒性; EFS,无活动生存; ELN,欧洲白血病网络; HSCT,造血干细胞移植; MFC,多参数流式细胞仪; MLFS,无白血病状态; MRD,可测量的残留疾病; NCI-CTCAE,国家癌症研究所不良事件的共同术语; NGS,下一代测序; OS,整体生存; PCR,聚合酶链反应; t max,最大血浆浓度的时间; Ven,Venetoclax; Zifto,Ziftomenib。
该办公室执行并交付 NE 优先事项:反应堆研究、开发、演示和部署是最高优先事项之一。我们的投资组合是整个 DOE 中最复杂的投资组合之一。它需要所有训练有素且积极主动的 DOE 员工来帮助实现该国领先的核实验室。INL 的 2023 财年业务量超过 18 亿美元,比上一财年增长 11.8%,同时获得了有史以来最高的可报销工作总额。除非拨款人有信心他们能够实现,否则不会将这种增长委托给组织。由于政府和国会的支持,《基础设施投资和就业法案》(称为《两党基础设施法》)和后续的《通货膨胀削减法案》(IRA)启动了 INL 的许多基础设施项目。由于 DOE-ID 和巴特尔能源联盟 (BEA) 对预期基础设施投资的有组织方法,许多项目都“准备就绪”。材料和燃料综合体 (MFC) 和先进测试反应堆 (ATR) 将进行重大改进,这将影响 INL 的可靠性和这些重要核设施的弹性。
SN 年份 详情 1. 2024 Imtiyaz Ahmad、Vibhav Prakash Singh、Manoj Madhava Gore,“使用基于离散小波的中心对称局部二值模式和统计特征检测糖尿病视网膜病变”,医学影像信息学杂志,第 1-28 页,2024 年 9 月,(SCIE-2.6),https://doi.org/10.1007/s10278-024-01243-2 2. 2024 Sumit Kumar、A Goswami、Vibhav Prakash Singh、Ruchir Gupta,“一种用于边缘计算资源分配的博弈论方法更快收敛的技术”,IEEE 服务计算学报,2024 年 10 月,第 1-11 页,(SCI-5.5) https://doi.org/10.1109/TSC.2024.3470313 3. 2024 Ankur Prakash 和 Vibhav Prakash Singh,“使用纹理和形状特征进行基于内容的肺气肿 CT 图像检索”,SN Computer Science,Springer,第 5(7) 卷,第 950 页,2024 年 10 月,(Scopus Indexed),https://doi.org/10.1007/s42979-024-03313-2 3. 2024 Ashima Tyagi、Vibhav Prakash Singh、Manoj Madhava Gore,“使用 MFC 的选定统计矩从 EEG 信号中检测精神分裂症
医学研究中人工智能的报告指南 J. Peter Campbell, MD, MPH、Aaron Y Lee, MD, MSCI、Michael Abràmoff, MD、Pearse A. Keane, MD, FRCOphth、Daniel SW Ting, MD PhD 和 Michael F. Chiang, MD 资金支持:JPC 和 MFC 得到美国国立卫生研究院 (马里兰州贝塞斯达) 的 R01EY19474、R01EY031331、K12EY027720 和 P30EY10572 的支持;以及防盲研究 (JPC) 的无限制部门资金和职业发展奖的支持。AYL 得到 NIH/NEI K23EY029246、NIH P30EY10572 和防盲研究的无限制拨款的支持。赞助商/资助组织未参与本研究的设计或实施。财务披露:Michael D Abramoff,IDx(I、F、E、P、S)、Alimera(F)。J. Peter Campbell,Genentech(F)。Aaron Y Lee,美国 FDA(E)、Genentech(C)、Topcon(C)、Verana Health(C)、Santen(F)、Novartis(F)、Carl Zeiss Meditec(F)。Pearse A. Keane,DeepMind Technologies(C)、Roche(C)、Novartis(C)、Apellis(C)、Bayer(F)、Allergan(F)、Topcon(F)、Heidelberg Engineering(F)。Daniel Ting,EyRIS(IP)、Novartis(C)、Ocutrx(I、C)、Optomed(C)。通讯作者:Michael F Chiang 地址?联系方式?
如今,多个生物电化学系统 (BES) 模块的堆叠配置被认为是成功扩大该技术规模的最佳选择,无论是发电微生物燃料电池 (MFC) 还是耗电微生物电解或电合成电池 (MEC 或 MES)。虽然并联电连接允许独立操作堆叠中的每个 BES 而不会出现重大问题,但从能量转换的角度来看,串联堆叠的 BES 更具吸引力,因为它们的能量损失较低,并且可以在更高的电压下操作它们。然而,在串联连接的 MEC/MES 电池的情况下,高性能生物阳极可以将堆叠中性能较差的电池推到其“工作区”之外,导致不利的电位、不受控制的电压下降以及电活性生物膜的暂时或永久损坏。过去提出了一些电池平衡系统 (CBS),但需要电力电子方面的专业知识。在这项研究中,提出了一种基于商用二极管的简单、被动且低成本的 CBS。采用三台双室 MEC。进行了第一组实验,以表征电池并了解串联电池堆中电压不平衡的原因。然后,采用并验证了 CBS。
摘要 燃料电池被认为是弥合未来清洁能源路径与当前“肮脏能源”路径之间差距的有希望的候选者。在各种类型的燃料电池中,PEMFC 因其更高的能量密度和环保特性(如果使用氢作为燃料)而用于多种应用。某些类型的燃料电池(例如 PEMFC)不仅可用于发电,还可用作电解器以收集氧气和氢气用于太空应用。回收的氧气可用于满足航天器中的氧气需求,而回收的氢气可用于发电。其他类型的燃料电池(例如微生物燃料电池 (MFC))可同时处理废水并发电。然而,存在一些挑战阻碍燃料电池发挥其全部潜力。大规模商业化仍然需要解决影响其可靠性、耐用性和坚固性的技术问题。因此,资源回收方面仍然存在重大挑战,例如成本高、缺乏合适的贵金属催化剂以及使用寿命缩短。首先要克服技术难题,赢得公众信任,从而催化燃料电池的广泛商业化推广,并适当促进对资源回收的更深入研究。关键词:燃料电池;优势;能源;挑战;氢能。
AD 适航指令 A/M 飞机 ADF 自动测向 [设备] ADS 空中数据系统 AHRS 姿态航向参考系统 AOA 攻角 AOS 侧滑角 AP 自动驾驶仪 APP 进近 ATC 空中交通管制 ATCAS 空中交通管制自动化系统 CAA 民航局 CG 重心 C L 升力系数 DAFCS 数字式自动飞行控制系统 DME 测距设备 EFIS 电子飞行仪表系统 FAA 联邦航空管理局(美国) FDR 飞行数据记录器 FL 飞行高度 FOD 外来物体损坏 FTB 飞行试验台 GNC 引导导航控制 GPS 全球定位系统 IAS 指示空速 ICAO 国际民用航空组织 M 马赫数(= 边界外的流速与当地音速之比,在海平面大约为 340 米/秒) MAC 平均气动弦 (M)MEL(主)最低设备清单 METAR 气象报告 MFC 多功能计算机 NM 海里(= 1.852 米) OAT室外空气温度(°C、°K、°F 外部空气)PF 飞行员飞行
统一专利法院 (UPC) 自 2023 年 6 月 1 日成立以来,已审理了许多侵权诉讼。迄今为止,大多数诉讼都依赖于字面侵权。UPC 非常重视根据权利要求的技术功能对权利要求进行解释,这意味着默认采用“目的性构造”。然而,海牙地方分院 (HLD) 最近的一项裁决援引了基于荷兰测试的等同原则。我们回顾了这一决定,并讨论了其与 UPC 之前的侵权诉讼的相关性。直接和间接侵权统一专利法院协议 (UPCA) 考虑直接侵权(UPCA 第 25 条)和间接或共同侵权(UPCA 第 26 条)。到目前为止,大多数案件都涉及直接侵权。然而,在 Hand Held Products v Scandit 一案中,慕尼黑地方审判庭 (MLD) 在批准初步禁令时认为,由于 Scandit 提供的软件开发工具包是该发明“与基本要素有关的手段”,客户可以使用它来生产所要求保护的条形码扫描设备,从而将该发明付诸实施,因此很可能存在共同侵权。 通过目的性构造侵权 正如我们在最近一篇题为“UPC 无效性”的文章中讨论的那样,UPC 确定每个术语的技术含义并确定所要求保护的发明所要解决的潜在问题,因此实际上应用了对相关权利要求的目的性构造。 权利要求特征必须始终根据整个权利要求来解释(VusionGroup v Hanshow Technology),并且必须始终使用说明书和附图作为解释权利要求的辅助手段(Nanostring v 10x Genomics)。在 Edwards v Meril 案中,MLD 考虑了一种心脏瓣膜支架,其“侧支柱相对于流动轴平行”。MLD 的结论是,“平行”一词不能从严格的数学意义上理解,因为图形显示略微凹陷的形状是可能的,并且不会破坏专利中解释的技术效果:与流动方向的对齐在瓣膜压接时不会改变。因此,“平行”一词被有目的地解释。 等同侵权 在 Plant-e v Arkyne 案中,HLD 近期作出了第一项关于等同侵权的判决。权利要求涉及一种燃料电池,该燃料电池使用微生物氧化化合物作为燃料并产生能量。这种燃料电池在本领域中被称为微生物燃料电池 (MFC)。涉案专利教导了添加植物通过光合作用持续提供化合物,以减少对外部燃料的需求。该产品被命名为植物-MFC (P-MFC)。图 1 的改编版本如下图左所示:
如今,人们对微生物燃料电池产生了浓厚的兴趣,因为其中可以使用不同的基质来产生电能。为了找到替代品并贡献环保技术,本研究通过实验室规模的微生物燃料电池,使用沙雷氏菌和红酵母作为燃料源。制造了一个带有空气阴极的单室微生物燃料电池,以铜箔和石墨板分别作为阳极和阴极电极。为了表征电池,在室温(18±2.2 ◦C)下测量了 30 天的电压、电流、pH 值和电导率等物理化学参数。对于含有细菌和酵母的 MFC,可以产生峰值电压和电流值 0.53±0.01 V 和 0.55±0.02 V,电流值 1.76±0.16 mA 和 1.52±0.02 mA。此外,观察到酸性操作 pH 值,其电导率峰值约为 242 mS/cm。最后,这项工作证明了微生物在产生电流方面具有巨大的潜力,为发电提供了一种新的、有前途的方法© 2023 秘鲁自治大学。由 Elsevier Ltd. 出版。这是一篇根据 CC BY-NC-ND 许可开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)。
外电细菌在没有任何介体的情况下将电子直接传递到细胞外电子受体的能力对于微生物燃料电池技术至关重要。当前的研究评估了从微生物燃料电池中从棕榈油磨坊流出物(POME)中分离的细菌的外发质潜能。香水样品是从尼日利亚奥森州立州立州立大学的棕榈油磨坊工厂获得的。分离株在色彩(差异)培养基上分析,以从黑色变为白色。分离株是在表型和分子上鉴定的。在双腔室微生物燃料电池(MFC)中研究了分离株产生有效电力的潜力。总体而言,从pome样品中获得了十个分离株,只有三个分离株通过将琼脂颜色从黑色转变为白色,显示了外部发明潜力。分子分析揭示了三种新型菌株AAS001(OQ690764),阿米洛菌Faciens菌株AAS002(OQ690765)和Priestia Aryabhattai菌株AAS003(OQ690766)。菌株AAS003与AAS001的应变为229mV和229mV和AAS002的菌株AAS003的电压电势最高,为191mV。同样,菌株AAS003记录的功率和电流密度(分别为345 mW/m 2和437 mA/m 2)远高于AAS001菌株(10 mW/m 2和64 mA/m 2)和菌株AAS002(15 mW/m 2和92 mA/m 2)。这项研究表明,AAS003菌株是生物电力产生的极好的生物催化剂。
