背景:2019 年 12 月,一种新型地方性疾病在中国武汉市蔓延。几周之内,世界卫生组织 (WHO) 宣布了一种新型冠状病毒,将其命名为 2019 冠状病毒病 (COVID-19)。2020 年 1 月下旬,由于该疾病在全球范围内迅速蔓延,世卫组织宣布疫情为“国际关注的突发公共卫生事件”。目前,尚无针对这种新发感染的疫苗或获批治疗方法;因此,本研究的目的是利用免疫信息学方法设计一种针对 COVID-19 的多表位肽疫苗。方法:利用几种促进免疫信息学方法和比较基因组学方法相结合的技术,以确定以 2019-nCoV 的包膜蛋白为靶标设计基于 T 细胞表位的肽疫苗的潜在肽。结果:通过比较测序发现 COVID-19 毒株中存在大量突变、插入和缺失。此外,发现十种与 MHC I 类和 MHC II 类结合的肽是疫苗设计的有希望的候选者,其世界人口覆盖率分别为 88.5% 和 99.99%。结论:基于 T 细胞表位的肽疫苗是针对 COVID-19 设计的,使用包膜蛋白作为免疫原性靶点。尽管如此,仍需要迅速对拟议的疫苗进行临床验证,以确保其安全性、免疫原性,并帮助阻止这种流行病导致毁灭性的全球爆发。
抗病性是动物种群生存和适应性中发挥关键作用的重要特征。了解抗病性的遗传基础对于管理和减轻野生动物和圈养动物种群中疾病爆发的影响至关重要。在本研究中,对现有文献进行了回顾,以调查动物种群抗病性的遗传基础。回顾重点关注主要组织相容性复合体 (MHC) 和其他参与免疫反应的基因。回顾发现,免疫反应的遗传基础由动物的基因组成决定,涉及许多不同的基因和途径。所涉及的特定基因可能因物种和种群而异。然而,不同动物物种的共同基因和途径表明存在共同的抗病机制。该研究确定了几种与抗病相关的基因和途径,包括参与产生免疫细胞、细胞因子和抗菌肽的基因和途径。此外,回顾强调了 MHC 在塑造动物种群免疫反应和抗病性方面的作用。此外,该综述还指出了我们对动物种群抗病性遗传基础的理解存在一些差距。我们需要对许多野生动物物种的抗病性遗传基础进行更多研究,以及对遗传和环境因素在形成抗病性方面的相互作用进行更多研究。
该模块将涵盖免疫学的基本细胞和分子方面,包括发育,先天免疫,感染的模式识别,抗体,补体,补体,细胞因子,B细胞,T细胞,T细胞,NK细胞,NK细胞,树突状细胞,抗原呈递,抗原呈递,MHC,MHC,疫苗接种,疫苗接种,一般病毒免疫学,HEPATIS,HEPINTIS,HIV/HEBINIM,HIV/HEBSIMS,癌症,癌症,癌症,癌症,癌症,癌症,癌症,癌症,癌症,癌症,癌症,癌症,癌症,癌症,癌症,癌症诊所中保护肠道和免疫学相关的专门问题。将强调免疫系统的动态性质,以及面对外部传染病的压力和内部恶性肿瘤的压力,需要进行广泛的冗余。随着课程的进行,我们希望能够瞥见当前的争议和突破,这些争议和突破使免疫学成为关键的医学和科学学科之一。在西方世界中,高质量的公共卫生,良好的营养和疫苗接种降低了传染病的影响,我们现在面临着一种疾病的流行,在这种疾病中,对外源性抗原(过敏)和自我抗原(自身免疫性)的不适当免疫反应本身负有疾病。操纵免疫系统治疗可以保留这些疾病的关键。
图1:MHC I类缺乏肿瘤的免疫荒漠化和抗治疗性。(a)CT26或CT26- B2M - / - 肿瘤和免疫组织化学(IHC)T-和NK细胞浸润的纵向动力学在接种后19天对T-和NK细胞浸润进行了分析。比例尺= 50 µm。(B)接种后20天,在CT26或MC38野生型CD8 + T细胞中的PD-1表达。(c)接种19天后19天(CT26:n = 3,MC38:n = 5),在CT26或MC38野生型或B2M - / - 肿瘤组织中的IFNG表达。(d至H)用αPD-1/αCTLA4ICB组合或同种型对照(D),αPD-1,αCTLA4或IR-相关对照mab(e),GP70-nna-nna-facter(αPD-1,αCTLA4),αPD-1/αCTLA4ICB组合或同种型对照组(D),GP70-ENCORNNA-FLPX MRPX MRPX,MRNNA-FLPX,MRNNA-facter(div)(d)(d)(d至h)携带所指定的父母或b2m - / - 肿瘤变异的生存奥沙利铂/5-氟尿嘧啶(OX/5-FU)或媒介物对照(G),局部放射疗法(LRT),剂量为12 Gy或0 Gy作为对照(H)。(i)LRT(H)后9 d中的血液中的GP70抗原特异性CD8 + T细胞(n = 10)。n = 4-5每个时间点(a;左)和代表性IHC染色(a;右)。n = 8(b)。n = 3(CT26)和n = 5(MC38)(c)。这些发现表明MHC I类抗原表现的丢失,由于产生的免疫DES-
,由于其独特的先天和适应性免疫特征,在癌症免疫疗法中起关键作用。这些细胞可以分泌细胞因子,包括干扰素G(IFN-G)和肿瘤坏死因子A(TNF-A),并可以通过FAS/FASL和抗体 - 依赖性细胞介导的细胞毒性(ADCC)等机制直接消除肿瘤细胞。与常规的AB T细胞不同,GD T细胞可以独立于主要的组织相容性复合物(MHC)表现和功能作为抗原呈递细胞(APC)靶向多种癌细胞。他们以非MHC限制的方式识别抗原的能力使它们成为同种异体免疫疗法的理想候选者。此外,GD T细胞在达到细胞靶标时表现出特定的组织对流和快速反应性,表明高水平的细胞精度和适应性。尽管有这些功能,但GD T细胞的治疗潜力受到了一些局限性的阻碍,包括它们的丰度有限,不满意的扩张,持久性有限,复杂的生物学和可塑性。为了解决这些问题,基因工程策略,例如使用嵌合抗原受体(CAR)T疗法,T细胞受体(TCR)基因转移以及与GD T细胞参与者的组合。本综述将概述各种工程策略的进步,讨论其前方的含义和挑战,以及未来对单一疗法和组合免疫疗法的工程GD T细胞的指示。
乳腺癌(BC),但约有30%的人无反应。由于ICI的效力取决于癌细胞对肿瘤特性抗原的有效表现,因此增加了这种预定的化合物可以提高ICIS的疗效。方法/研究人群:多醚离子载体抗生素,monensin(mon)的酯和尿电衍生物的文库已被合成。MTT细胞活力测定,以确定MON及其衍生物的IC50值。选择性索引,以识别癌症与非癌细胞的最选择性化合物。主要的组织相容性复合物(MHC)I类和II类表现以及编程的死亡凸式1(PD-L1)表达已使用流式细胞仪确定。蛋白质。为每个实验进行了至少三个生物学重复。结果/预期的结果:MON及其几个衍生物在纳摩尔范围内与MDA-MB-231人类BC细胞系的活性。mon及其最有效的衍生物显着增加了MHC I类和II类表现,并下调了BC细胞系中PD-L1的表达。讨论/意义:目前的发现将导致新的治疗方法的发展,这些方法可以用作单一药物或与现有ICI结合使用,以治疗转移性BC。通过突破我们的理解和发展新疗法的界限,这项研究可以影响改善BC转移性患者的预后。
可扩增和激活 T 细胞的肽疫苗已成为一种有前途的预防和治疗方法,可用于应对包括传染病和癌症在内的健康相关挑战 (Malonis、Lai 和 Vergnolle 2019)。与基于整个生物体的更传统的减毒活疫苗或基于整个蛋白质亚基的亚基疫苗相比,肽疫苗基于一小组足以诱导 T 细胞免疫反应的蛋白质片段(肽),从而能够引发更有针对性的反应,避免过敏和反应原反应 (Li et al. 2014)。肽疫苗的设计包括选择免疫原性蛋白质片段,通常称为表位 (Li et al. 2014),当将其包含在疫苗中时,可扩增表位特异性 T 细胞。机器学习的进步使我们能够预测哪些肽将由主要组织相容性复合体 (MHC) 分子呈递以供适应性免疫系统监视 (Ching 等人 2018;Reynisson 等人 2020),这可用于识别将显示哪些表位 (Sohail 等人 2021)。个体显示的表位取决于其 MHC 基因的特定等位基因,因此免疫系统显示的肽在个体之间可能存在很大差异 (Zaitouna、Kaur 和 Raghavan 2020)。因此,找到一组预测将由大部分流行人群显示的肽的工程任务
C型凝集素和收费受体:树突状细胞上的病原体受体。 为了识别微生物,未成熟的树突状细胞(DCS)表达类似收费的受体(TLRS)和C型凝集素,分别结合特定病原体成分和碳水化合物结构。 在TLRS识别后,诱导了信号转导级联反应,通过激活核因子-B(NF-B),这会导致共刺激分子和粘附分子的表达上调,并产生细胞因子,从而导致DC成熟。 通过C型凝集素对病原体的识别导致病原体内部化和细胞内加工,以通过MHC I类和II类分子呈现T细胞。 TCR,T细胞受体。C型凝集素和收费受体:树突状细胞上的病原体受体。为了识别微生物,未成熟的树突状细胞(DCS)表达类似收费的受体(TLRS)和C型凝集素,分别结合特定病原体成分和碳水化合物结构。在TLRS识别后,诱导了信号转导级联反应,通过激活核因子-B(NF-B),这会导致共刺激分子和粘附分子的表达上调,并产生细胞因子,从而导致DC成熟。通过C型凝集素对病原体的识别导致病原体内部化和细胞内加工,以通过MHC I类和II类分子呈现T细胞。TCR,T细胞受体。TCR,T细胞受体。
T淋巴细胞参与了免疫反应和细胞介导的免疫的调节,并帮助B细胞产生抗体。成熟的T细胞表达抗原特异性T细胞受体(TCR)。每个成熟的T细胞都表示与TCR相关的CD3分子。此外,成熟的T细胞通常显示两个辅助分子之一CD4或CD8。TCR/CD3复合物识别靶细胞上与主要组织相容性复合物(MHC)分子相关的抗原(例如病毒感染的细胞)。