过去 30 年来,太空用陀螺仪技术不断发展,并取得了显著成果,产品应用十分广泛。在欧洲,光纤陀螺仪 (FOG) 技术为卫星应用提供了最高性能,目前正在满足所有当前任务需求。陀螺仪领域的高性能部分由美国的半球形谐振陀螺仪 (HRG) 技术主导。在欧洲,这项技术也(但最近)在地面应用中实现了非常高的性能。新陀螺仪技术领域是一个充满活力的战略研究领域,由众多高精度海洋、陆地和航空应用引领。目前应用于角运动和线性运动传感的一项有前途的技术是原子干涉仪 (AI),但尚未转化为产品。基于冷原子干涉 (CAI) 的陀螺仪已证明其性能指标比 FOG 产品高出约 2 个数量级。对于其他类型的用途,磁流体动力 (MHD) 技术可以在有限的体积和质量内实现非常高的带宽测量,从而实现镜子的主动视线稳定。
Anderson博士最初在2005年在VA Portland Healthcare System(Vaporhcs)开始职业生涯。。Anderson博士最初在2005年在VA Portland Healthcare System(Vaporhcs)开始职业生涯。他获得了圣地亚哥州立大学的学士学位,北达科他州立大学的硕士学位以及奥本大学的临床心理学博士学位。在上研究生院之前,克里斯(Chris)住在阿拉斯加农村地区,并在社区精神卫生组织工作,与患有严重精神疾病的成年人一起工作。Anderson博士的临床工作集中在评估和治疗物质使用障碍以及移植患者复发风险的评估上。Anderson博士自2009年以来一直是MHD领导团队的成员,管理PTSD临床团队(PCT),物质成瘾治疗计划(SATP),并监督了心理健康部门(无家可归,RRTP,BHIP,BHIP,VJO)内的其他几项服务。 在2016年,克里斯(Chris)在谢里登(Sheridan)怀俄明州的VA医疗体系中作为心理健康的ACO进行了细节,并于2018年成为Vaporhcs心理学的负责人。 最近,他接受了精神卫生部门副临床主任的角色。 在业余时间,安德森博士喜欢通过旅行,运动和与家人和朋友在户外度过时光保持活跃。 培训董事,心理学计划:Psyd(她/她/她)的Rosie Getchell,心理学实践课程培训总监; West Linn CBOC的初级保健心理健康整合(PCMHI)的员工心理学家Anderson博士自2009年以来一直是MHD领导团队的成员,管理PTSD临床团队(PCT),物质成瘾治疗计划(SATP),并监督了心理健康部门(无家可归,RRTP,BHIP,BHIP,VJO)内的其他几项服务。在2016年,克里斯(Chris)在谢里登(Sheridan)怀俄明州的VA医疗体系中作为心理健康的ACO进行了细节,并于2018年成为Vaporhcs心理学的负责人。最近,他接受了精神卫生部门副临床主任的角色。在业余时间,安德森博士喜欢通过旅行,运动和与家人和朋友在户外度过时光保持活跃。培训董事,心理学计划:Psyd(她/她/她)的Rosie Getchell,心理学实践课程培训总监; West Linn CBOC的初级保健心理健康整合(PCMHI)的员工心理学家
主席:J. Windhab 食品加工工程,瑞士苏黎世联邦理工学院(ETH),瑞士 G. De Cesare 水力建筑实验室(LCH),洛桑联邦理工学院(EPFL),瑞士 M. Mori 北海道大学工学院能源与环境系统分部,日本札幌 H. Kikura 东京工业大学核反应堆研究实验室,日本大箕山 Y. Tasaka 北海道大学工学院能源与环境系统分部,日本札幌 V. Bareš 捷克技术大学(CTU)土木工程学院水力学与水文学系,布拉格,捷克共和国 J. Wiklund INCIPIENTUS Ultrasound Flow Technologies AB,瑞典 B. Birkhofer Swiss Re,瑞士 C. Rennie 渥太华大学土木工程系,加拿大 S. Fischer法国 Ubertone S. Eckert Helmholtz-Zentrum Dresden-Rossendorf (HZDR),MHD 部门,德累斯顿,德国 R. Kotzé INCIPIENTUS Ultrasound Flow Technologies AB,瑞典 D. Hurther Université Grenoble Alpes,地球物理与工业生态实验室 H. Murakawa 神户大学机械工程系,日本神户
抽象破碎的颗粒注射(SPI)已被用作ITER的基线减轻缓解系统,因为从SPI的辐射有效载荷穿透到DIII-D等离子体中比使用大量气体注入(MGI)方法优越。由于ITER等离子体的能量含量和当前实验的能量含量存在很大差异,因此需要针对当前实验的可靠3D MHD建模来投射到ITER等离子体上。为了支持这些需求,通过将SPI注射到两个具有截然不同的能量含量和基座高度的放电中,研究了DIII-D等离子体中SPI片段渗透的深度。400托尔 - 纯ne碎片颗粒被注入0.2 MJ L模式放电和2 MJ超级H模式放电中。结果表明,在DIII-D中,SPI片段深入到低能等离子体中。随着血浆能量含量的增加,SPI碎片渗透降低,一些放电表现出局限于血浆外部区域的渗透。注入的SPI片段也分布在约20厘米的距离上,从而导致一些片段在热淬灭结束后或之后到达。
拉伸片材上具有热场和磁场的驻点流* 1 Yahaya Shagaiya Daniel、2 Aliyu Usman、2 Umaru Haruna 1 尼日利亚卡杜纳州立大学理学院数学科学系。 2 马卡菲谢胡伊德里斯健康科学与技术学院生物医学工程技术系。 *通讯作者电子邮箱地址:Shagaiya12@gmail.com 摘要 本研究旨在检验热辐射和磁场对拉伸片材二维驻点流的影响。通过相似变换法将控制方程转化为非线性常微分方程组,然后利用隐式有限差分方案进行数值求解。驻点参数值越高,速度分布越增大,磁场则相反。温度分布是辐射能量的增函数。 关键词:热辐射、磁场、驻点流、拉伸片材。引言考虑到流动对介质的冲击会在表面周围形成一个驻点 (Hayat 等人,2020)。流动离开介质的消失会在尾随表面上产生另一个驻点 (Khan 等人,2020)。不可压缩粘性流体在拉伸片材上的流动和传热已在工业领域的许多过程中得到研究:聚合物的机械化挤出、金属板的冷却、塑料片材的空气动力挤出等 (Daniel 等人,2017a;Khashi'ie 等人,2020;Nandepnavar 等人,2021;Daniel 等人 2017b;Nadeem 等人 2020;Daniel 等人 2019a;Ghasemi & Hatami,2021 和 Daniel 等人,2019b)。 MHD 在拉伸板上的停滞流至关重要,因为它可应用于多种工程挑战,例如金属铸造厂的快速喷雾冷却和淬火、紧急核心冷却系统、微电子冷却、熔融纺丝工艺中的聚合物挤出、玻璃制造和原油净化 (Oyelakin et al., 2020; Anuar et al., 2020; Daniel, 2015; Nasir et al., 2020; Daniel and Daniel, 2015 and Lund et al., 2020)。当科学过程在高热能下进行时,例如金属或玻璃板的冷却,热辐射影响开始显示出不容忽视的重要作用 (Daniel et al., 2017c; Zainal et al., 2021 and Chaudhary et al., 2021)。许多研究人员已经讨论了不可压缩粘性流体的 MHD 流动和传热问题,包括文献(Maqbool 2020;Daniel 等人,2017;Hussain 等人,2020;Daniel 等人,2018;Afify 等人 2020 和 Daniel 2016)等。在目前的研究中,对共轭传导-对流和辐射传热问题进行了新的驻点流和能量转换研究。磁场用于控制和操纵流动行为,以提高热导率和传热性能。对流辐射传热模型
流动微生物的密度在减轻和监测动量,热和溶质边界层时表现出动态特征。看到这一点,我们检查了卡森纳米流体悬浮液的流动特征,这是由于片张的拉伸而引起的。研究了辐射,不均匀的散热器或源,热经液和布朗运动的影响。流是层流和时间依赖的。检查热量和传质特征的关节影响。速度滑移边界条件被认为是研究流量特征。建模的方程式是高度耦合和非线性的。因此,对于此模型是不可能的分析解决方案。因此,我们提出了一个数值解决方案。合适的相似性被思考将原始PDE的变态变成ODE,然后通过利用基于Runge-Kutta的射击技术来解决。借助图详细讨论了各种参数在流场上的影响。同时阐明牛顿和非牛顿液。被描述,嗜热参数的增强导致热量增强,从而降低了浓度。此外,特征是生物对流刘易斯的数量和小伙子的数量降低了动感微生物的密度。关键字:MHD,热量和传质,生物概念,卡森流体,布朗运动。
• ACE:大西洋城电力公司 • ADI:行政确定的激励措施 • AEG:应用能源集团 • 董事会或 BPU:新泽西州公用事业委员会 • C&I:商业和工业 • CEA:2018 年清洁能源法案 • CSI:竞争性太阳能激励措施 • CUNJ:新泽西州充电计划 • CRA:综合能源效率和可再生能源资源分析 • DCE:清洁能源司 • DEP:环境保护部 • DP:第二阶段设计阶段 • DPMC:物业管理和建设司 • ECC:能源资本委员会 • EDA:经济发展局 • EDECA:电力折扣和能源竞争法案 • EE:能源效率 • EM&V:评估、测量和验证 • EMP:能源总体规划 • EO:行政命令 • EPA:环境保护局 • ES:能源存储 • ETG:伊丽莎白镇天然气公司 • EV:电动汽车 • EV 法:电动汽车法案 • FC:燃料电池 • FS:第一阶段可行性研究 • FY:财政年度 • GRIP:电网弹性和创新合作伙伴关系 • LMI:低收入和中等收入 • MHD:中型和重型 • MOU:谅解备忘录 • MUDs:多单元住宅 • MW:兆瓦 • MWh:兆瓦时 • NJ:新泽西州 • NJBPU:新泽西州公用事业委员会
发展了一种通过测量近火星空间中氢能中性原子(H-ENA)反演太阳风参数的算法。假设H-ENA是由太阳风中的质子与外大气层中性子发生交换碰撞而产生的,在磁流体力学(MHD)模拟太阳风与火星相互作用的基础上,建立了H-ENA模型,研究了H-ENA的特性。结果表明,太阳风H-ENA与太阳风一样,是高速、低温的粒子束,而磁鞘H-ENA速度较慢、温度较高,能量分布较广。假设太阳风H-ENA通量服从麦克斯韦速度分布,高斯函数最适合拟合太阳风H-ENA通量,由此可以反演太阳风的速度、密度和温度。进一步基于H-ENA模型模拟的ENA通量研究表明,反演太阳风参数的精度与ENA探测器的角度和能量分辨率有关。最后,利用天问一号任务的H-ENA观测数据验证了该算法。反演后的上游太阳风速度与原位等离子体测量结果接近。我们的结果表明,从H-ENA观测数据反演的太阳风参数可以作为火星空间环境研究数据集的重要补充,因为火星空间环境研究缺乏对上游SW条件的长期连续监测。
Battery Electric Vehicle Battery Energy Storage Systems BNEF Bloomberg New Energy Finance CARB California Air Resources Board CSR Corporate Social Responsibility CVRP Clean Vehicle Rebate Program DAC Disadvantaged Community DCFC Direct Current Fast Charging DOE U.S. Department of Energy EPA U.S. Environmental Protection Agency EVSE Electric Vehicle Supply Equipment FCEV Fuel Cell Electric Vehicle ICCT The International Council on Clean Transportation ICE Internal Combustion Engine KPI Key Performance Indicator kW Kilowatt kWh Kilowatt Hour LCFS Low Carbon Fuel Standard LIC Low Income Community MHD Medium- and Heavy-Duty Vehicles MSA Metropolitan Statistical Area MUD Multi-Unit Dwelling OCPI Open Charge Point Interface OCPP Open Charge Point Protocol OEM Original Equipment Manufacturer PESO Paid, Earned, Shared, and Owned PEV Plug-In Electric Vehicle PHEV Plug-In Hybrid Electric Vehicle RFI Request for Information RFP Request for Proposal TNC Transportation Network Company (例如Uber,Lyft)VPPA虚拟电力购买协议ZEV零排放车辆
1.1 概述 1 目前,重大危险源 (MHI) 需要遵守人力部 (MOM)、国家环境局 (NEA) 和新加坡民防部队 (SCDF) 分别管理的《工作场所安全与健康 (WSH) 法》、《环境保护和管理法 (EPMA)》和《消防安全法 (FSA)》规定的安全、卫生与环境 (SHE) 要求。这包括但不限于以下内容: a) 定量风险评估 (QRA) b) 过程危害分析 (PHA) c) 安全与健康管理系统 (SHMS) d) 应急响应计划 (ERP) 2 为加强过程安全和对 MHI 的监管监督,新加坡已着手实施安全案例制度。此类制度已在欧盟和澳大利亚实施。该制度要求 MHI 向监管机构证明如何将安全关键事件 (SCE) 带来的风险降低到合理可行的最低水平 (ALARP),从而确保以可持续的方式安全运营。 3 本安全案例制度针对的是 WSH(MHI)法规下定义为 MHI 的设施,这些设施需要制作安全案例文件以供评估。 4 本安全案例技术指南描述了 MHI 如何构建安全案例并将其提交给重大危险源部门 (MHD) 1 以满足 WSH(MHI)法规。 1.2 安全案例的目的 5 安全案例是对可能导致