• 高级 P25 功能,例如身份验证 • 行业标准加密功能:AES 或 DES-OFB • ARC4™ 软件加密;与 ADP™ 兼容 • 常规投票扫描是标准配置 • 最多 1024 个频道 • 无线编程 (OTAP) 选项使您能够在现场对无线电进行编程 • 内部网编程 (OTIP) 允许您通过无线接入点或以太网接口对无线电进行编程 • 使用软件和硬件系统密钥增强无线电安全性 • Armada ® 编程软件提供简单的无线电群管理,其功能包括配置文件模板以及按功能或机构进行排序/过滤
Viking VM400 专为出色的关键任务性能、坚固性和可靠性而设计,是 EFJohnson 的下一代移动无线电。Viking VM400 是一款 P25 Phase 2 无线电,配备业界领先的音频、显示和高级功能,适用于警察、消防、EMS 和其他关键任务用户。
联邦机构使用 2700-2900 MHz 频段来操作各种类型的雷达系统,这些雷达系统执行对美国安全可靠的空中交通管制 (ATC) 和准确的天气监测至关重要的任务。这包括机场监视雷达 (ASR) 系统和气象雷达。ASR 系统由联邦航空管理局 (FAA) 和国防部 (DoD) 运营,用于监视国家空域内及周围的合作和非合作目标。ASR 还可以具有一些有限的天气监测功能。美国国家气象局 (NWS) 在 2700-2900 MHz 频段运营着一个下一代气象雷达 (NEXRAD) 系统网络,该系统提供有关风暴、降水、飓风和其他重要气象信息(降雨量和降雨率、风速、风向、冰雹、雪)的定量和自动实时信息,其空间和时间分辨率高于以前的气象雷达系统。NEXRAD 系统由美国国家气象局、联邦航空管理局和国防部在美国各地运营。
EL T/NAV 接口单元允许 EL T 与飞机的导航系统通信并接收位置数据(经度和纬度),EL T 将在发生坠机时传输这些数据。使用 24 位长消息协议对 EL T 进行编程,允许 EL T/NAV 接口使用飞机的 24 位地址自动对 EL T 进行编程。EL T/NAV 接口单元必须使用与 ICAO 或 Mode s 应答器系统 24 位地址相同的 24 位地址进行绑定(二进制“1 n 位接地)。这使 EL T 能够从一架飞机移动到另一架飞机,而无需手动重新编程 EL T。这对机队运营商来说非常有利,因为 ELT/NAV 接口单元将使用新飞机的 24 位地址标识自动重新编程 EL T。
1755-1850 MHz 1.频段介绍 1755-1850 MHz 频段的操作包括军事战术无线电中继、空战训练系统、跟踪、遥测和用于控制航天器的控制数据通信。联邦机构和军方还将该频段用于执法视频监控和机器人技术、飞机的地面遥测操作、导弹飞行测试、固定点对点微波中继通信和无人机系统。该频段目前正在接受审查,作为容纳无线宽带的候选频段。2.分配 2a.分配表 下面显示的频率分配表摘录自《联邦无线电频率管理规章和程序手册》第 4 章 - 分配、分配和计划。频率分配表 1755 - 1850 MHz 美国表 联邦 非联邦 FCC 规则部分
联邦政府在 1164-1215 MHz 频段的空对地和空对空方向运行航空无线电导航和无线电导航卫星系统。在此频段运行的地基和机载系统控制国家空域 (NAS) 内的民用和军用飞机。测距设备 (DME) 系统及其军用版本战术空中导航 (TACAN) 系统在整个频段运行。全球导航卫星系统 (GNSS) 是在无线电导航卫星服务 (RNSS) 中运行的系统的标准通用术语,可提供具有全球覆盖的自主地理空间定位。在美国,此类系统被称为定位、导航和授时 (PNT) 系统。这些系统允许接收器使用卫星发射的信号确定其位置(经度、纬度和高度),并为全球众多用户提供精确的授时。国防部(DoD)在此频段协调运营一个通信系统,即联合战术信息分发系统(JTIDS)。
联邦政府在 1164-1215 MHz 频段的空对地和空对空方向运行航空无线电导航和无线电导航卫星系统。在此频段运行的地基和机载系统控制国家空域 (NAS) 内的民用和军用飞机。测距设备 (DME) 系统及其军用版本战术空中导航 (TACAN) 系统在整个频段运行。全球导航卫星系统 (GNSS) 是在无线电导航卫星服务 (RNSS) 中运行的系统的标准通用术语,可提供具有全球覆盖的自主地理空间定位。在美国,此类系统被称为定位、导航和授时 (PNT) 系统。这些系统允许接收器使用卫星发射的信号确定其位置(经度、纬度和高度),并为全球众多用户提供精确的计时。国防部 (DoD) 在该频段协调运营一个通信系统,即联合战术信息分发系统 (JTIDS)。
RF68是一个完全集成的多波段,单芯片发射器IC,能够对输入数据流进行FSK和OOK调制。它包含一个频率合成器,该合成器是分数-N sigma-delta pll。对于频率调制(FSK),调制是在PLL带宽内部进行的。对于振幅调制(OOK),调制是通过打开和关闭输出PA执行的。PLL使用的频率参考是由22、24或26 MHz晶体振荡器生成的,具体取决于感兴趣的频带。连接到RFOUT引脚的功率放大器(PA)可以在50Ω负载中传递0 dbm或+10 dbm。当需要优化效率时,这两个输出功率都需要一个特定的匹配网络。可以通过PIN CTRL和数据构成的简化TWI接口配置该电路。该界面的引脚也用于将调制数据传输到芯片中。RF68的另一个关键特征是其发射和睡眠模式的低电流消耗以及其宽电压操作范围从1.8 V到3.7V。这使得RF68适用于低成本电池化学或能源收集应用。1.2。框图
美国商务部国家电信和信息管理局 (NTIA) 领导了一个跨部门小组,以确定在 1755-1850 MHz 频段容纳商业无线宽带的可行性。虽然本报告中总结的分析表明重新利用存在许多挑战,但 NTIA 得出结论,重新利用该频段的所有 95 兆赫是可能的。仍需应对的挑战包括高成本和长期计划,估计在 10 年内大约需要 180 亿美元,假设大多数现有联邦用户重新安置,不包括可比目标频段现有系统的成本。1 然而,频谱可以专门提供给商业利益的程度需要进一步调查,因为一些联邦系统可能会无限期地保留在该频段。作为应对这些挑战的一步,NTIA 认为各机构需要与行业合作,以确定潜在的解决方案,其中可能包括部分清理方案和分阶段的商业拍卖和进入方法。 NTIA 还认为,频谱共享是满足日益增长的频谱访问需求的重要组成部分,联邦和非联邦用户都需要采用创新的共享技术来满足这一需求。
图 5-16 由于 ADC 孔径不确定性(抖动)导致的采样幅度误差 ............................................................................................................................. 102 图 5-17 预测的 AD6644 SNR 与各种模拟输入频率的时钟抖动 ............................................................................................................. 103 图 5-18 典型的高质量本振 SSB 相位噪声规格 ............................................................................................................................. 105 图 5-19 由于 DNL 导致的 ADC 量化误差 [Brannon 之后,111] ............................................................................. 106 图 5-20 高性能 AD6644 14 位多级 ADC 的架构 [模拟,107] ............................................................................................. 106 图 5-21 应用宽带抖动来改善 ADC SFDR ............................................................................................. 107 图 5-22 添加抖动信号后 AD6644 杂散性能的改善[模拟,107] ................................................................................ 108 图 5-23 由于 HF 拥塞而预测的平均可用抖动功率(下限) ............................................................................................. 109 图 5-24 数字下变频器 ............................................................................................. 110 图 5-25 NCO 作为复杂(正交)直接数字合成器 ............................................................. 112 图 5-26 实用抽取 CIC 滤波器 - 积分器、抽取器和梳状器 ............................................. 113 图 5-27 CIC 的频率响应显示混叠的影响(M=100、L=4、R=1) ............................................................................................................. 113 图 5-28 CIC 滤波器的频率响应与 L 的关系