摘要。MICROSCOPE 空间实验旨在以比以往更高的精度测试等效原理。其原理是比较嵌入在绕地球运行的卫星上的空间加速度计中的同心测试质量的自由落体。由于所谓的无阻力系统,非重力对卫星运动的影响大大降低。MICROSCOPE 从 2017 年 4 月运行到 2019 年 10 月。对第一组测量的分析使等效原理测试的精度提高了大约一个数量级。在 10-14 的水平上,铂和钛中的一对质量没有检测到任何违规行为。MICROSCOPE 由 ONERA 和 OCA 作为科学领导者提出,由 CNES 作为项目经理开发,是第一个致力于低地球轨道基础物理的欧洲太空任务。ZARM、PTB 和 ESA 是欧洲的主要贡献者。
背景:我们的MPM组装(在[1]中报告的详细信息)使用扫描,紧密焦点飞秒激光器(1,040和1,560 nm)来刺激样品中的非线性光学相互作用。这些相互作用发生在多个光子同时相互作用并激发电子,从而赋予其能量之和。当激发电子落回其基态时,单个光子被入射光子的能量之和发出[4]。在2光子相互作用中,发射的光子的能量是入射光子的第二阶谐波(即,频率/能量/能量或一半波长)。这发生在缺乏反转对称中心的晶体结构中的矿物质中。对于3光子相互作用,发射光子的能量相对于入射光子的三倍。这些相互作用会发生在激光焦点范围内的折射率变化时。在2-光子和3光子的相互作用中,如果将电子在激发态内刺激到更高的振动水平,则振动衰变损失了一定数量的能量,从而导致在较长波长下荧光发射。非线性
通过最大程度地减少内部缺陷来帮助维持PCB性能,可以通过横截面分析(无论是用于QC,故障分析还是R&D)来研究PCB板和组件的内部结构。可以检查具有光学显微镜的裂纹,空隙和其他缺陷的各个板和组件层。如果需要数据,则可以将显微镜与光谱结合使用。
为了通过最大限度地减少内部缺陷来帮助保持 PCB 性能,可以使用横截面分析来调查 PCB 板和组件的内部结构,无论是用于质量控制、故障分析还是研发。可以使用光学显微镜检查板和组件的各个层是否有裂纹、空洞和其他缺陷。如果需要成分数据,则可以将显微镜与光谱学结合起来。
Exaddon的Ceres µAM系统通过局部电沉积打印高电导金属对象。该系统将直接在预预生使的芯片和Micropcb上打印独立的结构,例如支柱,针和线圈。打印在室温下发生,不需要后处理,并且与IC和PCB制造步骤兼容。分辨率为<1 µm,结构可以以微米精度位于印刷表面上。可能的纵横比为100:1。应用包括半导体探针测试,神经接口/BCIS和MMWAVE/5G/THZ组件。
在人体管的顶部存在一个棱镜,以使物镜系统的光线弯曲45 o。这种弯曲的光束进入装有目镜镜头系统的拉动管中。目镜镜头系统是2个组件透镜系统(下场镜头和上眼镜),可以放大客观透镜系统形成的图像(其放大率大概是6或10或40或40或100次,取决于所使用的物镜的放大功率)。固定透镜系统或目镜可能具有10倍或15 X倍数。在包含目镜/叶位单元的透镜的金属套管上给出了叶片/目镜的放大功率,例如10x或15倍。通常是10倍的目镜,即使用10倍放大倍率。
关键字:极化,心脏病发作,肌节,各向异性直接极化显微镜使A型磁盘能够双向射线折射[1]并评估心肌细胞收缩的状态,从而使肌原纤维肉瘤可视化。已经确定,在呼吸道或心脏骤停的条件下,器官和组织的病理变化发生不同[2]。因此,这项研究的目的是评估在两个根本不同的急性条件下与心脏氧气供应不足相关的急性疾病。通过Zeiss Axio Imager进行了极化图像和非极化图像的比较分析。A1(德国Carl Zeiss)具有和不具有极化系统的显微镜。 由于心肌的各向异性现象,观察到光学特性,例如双折射。 这使我们能够可视化肌膜的成分,因为磁盘具有异质性和独特的光学特性。 在我们的实验中,我们使用了lambda(相)板来提高图像的质量进行分析。 我们计算了整个肉瘤的长度和A和我的磁盘,然后使用Origin Pro软件(OriginLab,USA)对数据进行了统计分析。 在使用ANOVA通过非参数分析检查分布的正态性后,评估了测量结果。 对心肌细胞的极化特性的研究表明,肉皮长度在呼吸停滞和心脏骤停期间显着降低。A1(德国Carl Zeiss)具有和不具有极化系统的显微镜。由于心肌的各向异性现象,观察到光学特性,例如双折射。这使我们能够可视化肌膜的成分,因为磁盘具有异质性和独特的光学特性。在我们的实验中,我们使用了lambda(相)板来提高图像的质量进行分析。我们计算了整个肉瘤的长度和A和我的磁盘,然后使用Origin Pro软件(OriginLab,USA)对数据进行了统计分析。在使用ANOVA通过非参数分析检查分布的正态性后,评估了测量结果。对心肌细胞的极化特性的研究表明,肉皮长度在呼吸停滞和心脏骤停期间显着降低。根据这些数据,我们与确定相关和确定系数的确定以及构建阶阶3的多项式模型的相关性和回归分析,并构建了描述所获得数据的依赖方程。我们研究了未染色的心脏切片的极化图像和非极化图像,以及用苏木精和曙红,碱性富氏素和李染色方法染色的切片。正常情况下的中位肌节长度为1.86(1.79; 1.92)μm,呼吸停滞中的1.77(1.66; 1.82)μm,心脏骤停中的1.77(1.66; 1.82)μm。I-DISC的大小在实验组中也减小。对照组中位的各向同性盘长度为0.56(0.45; 0.65)μm和0.44(0.38; 0.57)μm,用于呼吸停滞,而对心脏骤停的中位数为0.25(0.22; 0.22; 0.22; 0.22; 0.22; 0.26; 0.26; 0.26)μm。同时,所有组中值的a磁盘并不以显着差异的存在为特征。这项研究表明,在与缺氧相关的各种病理过程的发展过程中,A磁盘和I-Disk Saromere参数之间的相关程度大大降低。与急性心脏骤停的实验中,椎间盘长度之间的关系显着较低,与急性呼吸停滞相比,这可以表征为更快的心肌损伤过程,这可能与循环滞留,快速血液脱氧和明显的心肌缺血发展有关。
摘要。显微镜空间实验旨在以比以往任何时候都更好的精度测试等效原理。其原理是比较嵌入在空间加速度计中的同心测试质量的自由下落。由于所谓的无阻力系统,非重力力对卫星运动的影响大大降低。显微镜从2017年4月到2019年10月运行。对第一系列测量结果的分析导致对等价原理测试的准确性的大约一定程度的改进。在10-14的水平上,铂和钛中的一对肿块未检测到侵犯。显微镜由Onera和OCA提出,作为科学领导者,由CNES作为项目经理开发,是欧洲第一个专门用于低地球轨道基本物理学的太空任务。Zarm,PTB和ESA是欧洲的主要贡献者。