Presenter: Benyamin Haghi, MICS lab Title: FENet: Feature Extraction Neural Network for Brain Machine Interfaces Author(s): Benyamin Haghi, Tyson Aflalo, Spencer Kellis, Charles Guan, Kelly Kadlec, Nader Pouratian, Richard Andersen, Azita Emami Abstract: Clinical neural prosthetic systems decode brain signals recorded from implanted电极阵列使瘫痪的人参与者控制外部设备。此过程以两个基本步骤发生。首先,传达有关电极尖端周围神经元活动的信息的电信号被转化为“神经特征”。其次,学习神经特征与参与者的意图之间的关系,随后被解码以控制外部设备。在这里,我们提出了Fenet,这是一种紧凑的(f)食品(E)Xtraction(Net)工作,该作品学习了电信号和神经特征之间优化的映射,与经典特征构造方法相比,它显着改善了解码性能。fenet使用一种新型体系结构进行参数化,该新体系结构共同优化了神经解码过程的特征提取和特征解码阶段,同时限制了特征提取算法将相同的参数化用于我们训练集中使用的所有电极。这种方法是基于这样的理解:尽管不同神经元的活性将以不同的方式对参与者的意图进行解码,但将神经活动转化为被电极检测到的电气波动的基础过程是在不同的电极,记录时间和大脑区域的跨电极保守的。在这项工作中,我们通过使用植入人类皮质中的电极阵列记录的神经数据来预测计算机光标运动的运动学来验证FENET架构。我们比较了从FENET计算出的神经特征的性能与两个当前的金标准:1)通过计算宽带神经信号的阈值交叉所计算出的神经尖峰事件的速率; 2)宽带神经数据的小波分解。我们发现,基于FENET的特征的表现使这两种方法的表现分别降低了50%和47%,而R2的特征分别超过了51%和47%。我们进一步介绍了超参数选择对FENET性能的影响的评估,包括训练数据的数量和质量以及参数初始化的选择。我们的结果表明,受过训练的FENET可用于新的数据集,而无需修改,并且可以提高训练的性能,概括和效率。此外,我们的方法演示了如何受域特定知识约束的机器学习技术可以显着改善泛化性能。
摘要。本文提出了一种基于动态阈值 MOSFET (DTMOS) 的下变频吉尔伯特混频器,用于采用 UMC 180 nm CMOS 工艺的医疗植入通信服务 (MICS) 接收器设计。电流源辅助器和开关偏置技术用于提高基于 DTMOS 的吉尔伯特混频器的性能。所提出的设计在 403 MHz 的射频 (RF) 下工作,在 5 dBm 的 LO 功率下最大变频增益为 12.5 dB。所提出的设计的 1 dB 压缩点和三阶输入截点 (IIP3) 分别为 - 8.79 dBm 和 3.92 dBm,噪声系数 (NF) 在 10 MHz 中频 (IF) 下为 6.6 dB。该设计电路在 0.9 V 电源电压下工作,直流功耗为 0.55 mW,芯片面积为 0.035 9 0.037 mm 2。因此,这种具有高转换增益和更好噪声性能的设计是适合 MICS 应用的模块。
摘要背景:超级加工食品(UPF)和超级加工饮料(UPB)消费量与多种非传染性疾病(NCD)的较高风险有关。,由于大量食品的资源和政治影响力的增长,全球对这些产品的消费量正在增加,这是由于生产,加工,制造,营销,零售和消费实践的深刻变化。虽然高收入国家(HIC)的UPF和UPB的销售正在停滞,但人口众多的中等收入国家(MIC)的销售正在迅速扩大。在本文中,我们采用了粮食系统方法的政治经济学来了解麦克风在麦克风中的增长如何驱动NCD大流行。方法:我们进行了混合方法综合综述。这涉及定量数据收集和描述性统计的开发;搜索有关MIC中UPF扩展的学术,市场和灰色文献;主题的发展,三个说明性的案例示例(南非,哥伦比亚和印度尼西亚),以及麦克索成功运动的推动者的综合,以提出公共卫生运动的建议。结果:我们预测,麦克风中UPF的综合销量将于2024年与HIC相同,并且MICS中UPB的总销量已经大大高于HIC。同样,与HIC相比,MIC的UPF销量的年增长率更高。我们还通过建立全球生产和超本地分销网络,扩大其营销,挑战政府政策和科学专业知识并选择公民社会来展示大型食品如何巩固其在MIC中的影响力。我们认为,公共卫生可以通过建立具有多种技能的驱动和热情人士的全球全球网络来应对大食品的影响,并提倡提高政府领导。结论:MICS中UPFS和UPB的销售的预计增加引起了人们对全球预防和治疗NCD的能力的主要关注点。关键字:超级加工的食物,糖粉饮料,公司,公司权力,倡导版权:©2021作者;由科尔曼医学科学大学出版。这是根据Creative Commons归因许可条款(https://creativecommons.org/licenses/ by/4.0)分发的开放式文章,该文章允许在任何媒介中不受限制地使用,分发和再现,前提是适当地引用了原始工作。引用:Moodie R,Bennett E,Kwong EJL等。超级加工的利润:反对超级加工食品的全球传播的政治经济学 - 跨国食品公司的市场和政治实践的综合评论以及战略性的公共卫生反应。国际卫生政策管理。2021; 10(12):968–982。doi:10.34172/ijhpm.2021.45
MIC是根据临床和实验室标准研究所方法论和指南确定的,麦克风90被推论用于评估其体外效力。BWC0977溶解在DMSO中以制造初始库存溶液并进行肉汤微稀释,并将其进一步稀释为阳离子调整后的Mueller-Hinton Broth(CAMHB),以在测试板中的顺序稀释。比较器化合物。连续分离株(社区和医院相关的来源,包括皮肤和软组织,呼吸道,血液,尿路和胃肠道感染)在2017 - 2018年收集的全球医疗中心在IHMA上收集的,没有特定的偏见,而没有特定的偏见。MIC,分别是从血液,腹腔内,生殖器官,呼吸道,呼吸道,流动和软组织和尿道的感染中分别从全球医疗中心收集的。
在过去的二十年中,从传统的侵入性心脏手术(MIC)(MICS)发生了重大转变,这是由快速技术进步驱动的[1-8]。在2021年,德国报告了36.8%的主动脉瓣(AV)手术和所有二尖瓣(MV)手术的55.7%,用于微创技术[9]。此外,还观察到了欧洲进行机器人心脏手术的欧洲机构的数量,从2016年的13个到2019年增长到26个中心,也已经观察到[4]。在我们机构中,所有心脏手术中有75%的侵入性是最具侵入性的,并且所有员工外科医生都经过培训以执行本手稿中的手术。麦克风的越来越多可归因于两个主要因素。首先,它应对战斗心血管疾病的全球必要性。其次,它是通过承认心脏手术中最小通道技术的无数收益来驱动的[10]。这些技术包括减少手术创伤,减少术后疼痛,较短的住院时间和成本,降低感染风险,更快的恢复速度,更快地恢复常规活动以及改善美容结果[6,7,11-11-16]。MIC是由胸外科医师协会(STS)通过两个标准来定义的:首先,使用较小的切口和偏离常规的中位胸腔切开术(MS),其次是进行手术,而无需心肺化的手术(CPB)[17,18]。降低的侵入性与系统性炎症,输血需求,肾功能障碍以及血管和神经性并发症以及较短的跨夹时间[11,12,14 - 16,19,19-24]有关。尽管MIC在技术上的要求更高,并且初始报告表明MICS组的跨钳位时间更长,但我们观察到跨夹的时机降低,尤其是在微创二尖瓣手术(MIMV)中,如作者[25] [25]。
在过去的二十年中,从传统的侵入性心脏手术(MIC)(MICS)发生了重大转变,这是由快速技术进步驱动的[1-8]。在2021年,德国报告了36.8%的主动脉瓣(AV)手术和所有二尖瓣(MV)手术的55.7%,用于微创技术[9]。此外,还观察到了欧洲进行机器人心脏手术的欧洲机构的数量,从2016年的13个到2019年增长到26个中心,也已经观察到[4]。在我们机构中,所有心脏手术中有75%的侵入性是最具侵入性的,并且所有员工外科医生都经过培训以执行本手稿中的手术。麦克风的越来越多可归因于两个主要因素。首先,它应对战斗心血管疾病的全球必要性。其次,它是通过承认心脏手术中最小通道技术的无数收益来驱动的[10]。这些技术包括减少手术创伤,减少术后疼痛,较短的住院时间和成本,降低感染风险,更快的恢复速度,更快地恢复常规活动以及改善美容结果[6,7,11-11-16]。MIC是由胸外科医师协会(STS)通过两个标准来定义的:首先,使用较小的切口和偏离常规的中位胸腔切开术(MS),其次是进行手术,而无需心肺化的手术(CPB)[17,18]。降低的侵入性与系统性炎症,输血需求,肾功能障碍以及血管和神经性并发症以及较短的跨夹时间[11,12,14 - 16,19,19-24]有关。尽管MIC在技术上的要求更高,并且初始报告表明MICS组的跨钳位时间更长,但我们观察到跨夹的时机降低,尤其是在微创二尖瓣手术(MIMV)中,如作者[25] [25]。
目标:我们假设为这项研究选择的一个或多个非抗生素候选者将证明针对金黄色葡萄球菌的抗生素活性。方法:我们确定了非抗生素药物(氨氯地平,硫酸,硫酸胺,ebselen和sertraline)针对甲级素链球菌的最低抑制浓度(MIC)和最低杀菌浓度(MBC)(MBC)(MBCS),用于使用微纯蓝酸盐蓝蓝色蓝色测量(MABA)(MABA)。我们的研究小组选择了从鼻和软组织感染患者的鼻和伤口拭子培养物中获得的临床分离株,这些植物在南德克萨斯州外科医学研究网络(STARNET)的初级保健诊所看到。结果:三种非抗生素药物的所有分离株均具有相同的麦氯地平:64μg/ml; Azelastine,200μg/ml;和舍曲林,20μg/ml。EBSELEN的MIC为0.25μg/mL(SA-29213,A1019和J1019),0.5μg/ml(A32和B60)和1μg/mL(B72)。氨氯地平,硫二胺和舍曲林的MBC在其麦克风稀释范围内,表明所有测试分离株的杀菌活性。ebselen MBC是高度高的稀释液,也表明所有测试分离株的杀菌活性。结论:总之,所有四种非抗生素均在体外活性在不同程度上针对金黄色葡萄球菌临床分离株。ebselen是所测试的四种非抗生素中最有效的。©2021作者。由Elsevier Ltd代表国际抗菌化疗学会出版。这是CC BY-NC-ND许可(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章
Convergent Design 宣布推出 Erika AI 人脸追踪、四摄像头、超快速切换 (2022 年 6 月 3 日,科罗拉多州科罗拉多斯普林斯) Convergent Design 宣布推出用于会议和直播应用的全新 Erika AI 系统。Erika AI 的亮点包括人脸追踪、支持多达四个 UHD 摄像头以及超快速 (0.25 秒) 语音激活切换。每个参与者 (最多 20 人) 都有自己独特的 (虚拟) 摄像头和无线麦克风,可实现卓越的特写视图,同时将回声和混响降至最低。Erika AI 采用现成的大型传感器 4K DSLR/无反光镜相机。然后,系统从每个摄像头创建最多 5 个区域,勾勒出每个参与者的轮廓。这五个区域与 4 个摄像头相结合,最多可支持 20 名参与者。在 20 名参与者中的任何一名之间切换仍需 0.25 秒。Erika AI 无线麦克风通常位于会议桌边缘,靠近每个扬声器。微型麦克风不会占用工作空间,用户可以自由地做笔记或在笔记本电脑上打字。麦克风还可以通过简单的磁性附件佩戴,方便在会议区域自由移动。25 小时电池加上自动开/关机功能,可最大限度地减少充电停机时间。只需将麦克风面朝下翻转即可静音。自动音量控制可消除声音紧张,参与者可以用正常语调讲话。典型的设置时间不到 15 分钟,使系统易于重新配置。完整的 Erika AI 系统包括 1-4 个摄像头、1-20 个无线 Erika 麦克风、一个基于 USB 的无线接收器和一台运行 Erika AI 应用程序的 PC/笔记本电脑。Erika 与大多数 UCC 应用程序兼容,包括 Zoom、Teams、Meet、Webex 和 BlueJeans。此外,还支持 OBS、VMix、Wirecast 和 Pro Presenter 等直播程序。 Erika AI 应用程序支持通过简单的单击和拖动以及滚轮大小调整来放置每个摄像头内的每个区域(虚拟摄像头)。此外,还可以添加每个参与者的姓名和头衔以显示在会议应用程序屏幕上。独特的单人模式将系统锁定到特定扬声器,消除了因咳嗽、打喷嚏和其他噪音而导致的潜在错误切换。Erika AI 需要独立的 Nvidia GPU 来处理面部跟踪和增强功能,例如降噪、回声消除和超级缩放器。目前,视频输入是通过 HDMI/SDI 到 USB 转换器基于 USB 的。但是,未来的更新将包括 NDI 有线和无线支持以及基于 Stream Deck 的遥控器。在 InfoComm 2022 的 W1775 展位上观看 Erika AI 的实际应用。www.convergent-design.com
1 Gustave Roussy-Centresup。Elec-therapanacea herec-therapanacea rashiation疗法中心和肿瘤学中的人工智能,Gustave Roussy Cancer Campus,Villejuif,法国2 Artorg 2 Artorg生物医学工程中心巴黎 - 萨克莱和阿里亚·萨克莱,法国4 Inserm,U1030,巴黎,法国5大学,巴黎大学,法国巴黎UFR deMédecine,法国6实验室MICS,Centralsup´elec-elec-University Paris-Saclance
President of the jury: Mr. Hervé Pouliquen Professor, Director of training, DVM, PHD, ECVPT Oniris Vetagrobio Nantes - School National Veterinary Member of the jury: Mrs. Amandine DRUT CONCERENCES, DVM, PHD, ECVIM -CA oniris Vetagrobio Nantes - National Veterinary School Guest of the Jury: (DR2), PHD, HDR INRAE (National农业,食品与环境研究所 - MIHA单位(与人类和动物的微生物群相互作用),MICS