在大鼠毒性研究中,建议通过确定的神经解剖标志修剪大脑以获得一致的切片。在本文中,我们描述了一种矩阵引导修剪方案,该方案使用通道重现解剖标志的冠状水平。设置阶段和验证研究均在 Han Wistar 雄性大鼠(Crl:WI(Han))上进行,10 周龄,体重 298 + 29 ( SD ) 克,使用适合体重 200 至 400 克大鼠大脑的矩阵(ASI-Instruments 1,休斯顿,德克萨斯州)。在设置阶段,我们确定了八个通道,即 6、8、10、12、14、16、19 和 21,分别匹配视交叉、额极、视交叉、漏斗、乳头体、中脑、小脑中部和小脑后部的推荐标志。在验证研究中,我们使用选定的通道修剪了 60 只大鼠的浸入固定脑,以确定通道再现解剖标志的一致性。成功率(即每个级别的预期目标的存在)范围为 89% 到 100%。如果未实现 100% 的成功率,则注意到脑修剪的偏移是朝向尾极。总之,我们开发并验证了一种大鼠脑的修剪方案,该方案允许冠状切片具有与标志引导修剪相当的广泛性、同源性和相关性,并且具有技术人员可以快速学习的优势。
摘要:氧化应激介导的损伤通常是帕金森氏病(PD)的下游结果,帕金森氏病(PD)的标志是大脑的黑骨术区域内多巴胺能神经元的急剧下降,这构成了患者有症状的运动降低。调节氧化应激水平可能会在预防PD病理学方面采用有益的方法。在这里,我们评估了烟酰胺腺苷磷酸腺嘌呤(NADPH)氧化酶(NOX)抑制剂,这是由Aptabio Theraphators与NOX-1,2和4。利用N27大鼠多巴胺能细胞和C57BL/6小鼠,我们确定了α-核蛋白预先形成的纤维(PFF)诱导的蛋白质聚集的暴露,这是PD病理学的标志。对新颖化合物的体外评估表明,细胞活力的增加并降低了在10 nm最佳浓度下暴露于PFF的细胞毒性,ROS和蛋白质聚集(Thio thio-flavin-t染色)。同时,口服处理在行为测试中缓解了运动率,例如后肢紧握,旋转rot,极点,嵌套和修饰测试,通过减少蛋白质聚集,基于营救的多巴胺能神经元损失。在纹状体和腹中脑区域内抑制NOX-1,2和4,包括Nigra Compacta(SNC)有助于神经保护/恢复效应,使其成为PD的潜在治疗选择。
酒精使用障碍(AUD)已知具有重要的遗传成分,但其遗传力与全基因组关联研究的发现之间仍然存在很大的差距。有助于这一差距的一个潜在因素可能是遗传相互作用,或者是遗传相互作用,这在AUD的背景下在很大程度上没有探索。这项研究的目的是调查上毒在美国印第安人的易感性和严重性中的作用,美国印第安人在美国所有族裔中表现出最高的AUD率,我们首先确定了先前与酒精依赖性和AUD相关的基因,然后通过生物学网络扩展了该基因,最终构成了3,736 Genes and Congulation elements and Interialts。最终基因集被映射到742个人的美洲印第安人队列中的476K变体。,我们对变体集进行了成对的遗传相互作用关联分析,然后进行了双集群程序,将相互作用的SNP对分组为相互作用的间隔。总共确定了114对基因相互作用对,并确定调节元素与AUD严重程度显着相关。这些基因富含免疫系统,细胞粘附,神经元和疾病途径。他们的表情在中脑GABA能神经元中特别丰富。我们的研究代表了任何人群中AUD的首次大规模遗传相互作用研究。我们的发现表明,上毒可能有助于AUD的发展和发展。
小脑和基底神经节都因其在运动控制和动机行为中的作用而闻名。这两个系统传统上被认为是独立的结构,通过单独的皮质-丘脑环路协调它们对行为的贡献。然而,最近的证据表明这两个区域之间存在丰富的直接连接。尽管有强有力的证据表明两个方向都有连接,但为了简洁起见,我们将讨论限制在从小脑到基底神经节的更明确的连接上。我们回顾了两组这样的连接:通过丘脑的双突触投射和到中脑多巴胺能核、VTA 和 SNc 的直接单突触投射。在每种情况下,我们都从解剖追踪和生理记录中回顾了这些通路的证据,并讨论了它们的潜在功能作用。我们提出证据表明,丘脑的突触外通路参与运动协调,其功能障碍会导致运动障碍,如肌张力障碍。然后,我们讨论小脑向腹侧被盖区和黑质内核的投射如何影响这些核的各自目标:腹侧被盖区和背侧纹状体中的多巴胺释放。我们认为,小脑向腹侧被盖区投射可能在基于奖励的学习中发挥作用,因此会导致上瘾行为,而向黑质内核投射可能有助于运动活力。最后,我们推测这些投射如何解释许多表明小脑在精神分裂症等精神障碍中发挥作用的观察结果。
奖励选择选项通常包含多个组件,但是单脑体素中的神经信号是标量,并且偏向于上或向下变化。在先前的研究中,我们设计了奖励捆绑包,其中包含具有独立设定量的两个奶昔。我们曾使用心理物理学和严格的经济概念来估计代表的二维选择差异曲线(ICS),这些曲线揭示了这些捆绑包的随机偏好,这些捆绑是在系统的,集成的人的中。同一IC上的所有捆绑包都同样受到首选(因此具有与选择无关紧要的效用相同的效用);在较低的IC(较低IC)(较低的效用)上,优先使用较高IC(较高的实用程序)束。在当前的研究中,我们使用既定行为进行了使用功能磁共振成像(fMRI)进行测试。现在,我们在人类和男性参与者的奖励相关大脑结构中表现出神经反应,包括纹状体,中脑和内侧轨道额皮层(CC中间),遵循ICS的特征模式:沿IC的相似响应(尽管有不同的bundle构成),但跨IC的单调性变化,但跨IC(不同的是不同)。因此,这些大脑结构将多个奖励组件整合到标量信号中,远远超出了单一元素奖励的已知主观值编码。
多巴胺 (DA) 神经元活动和信号传导在调节控制各种行为输出的大脑回路中起着至关重要的作用,包括(但不限于)动机、运动控制、奖励处理和认知 (1–3)。中脑 DA 神经元大致可细分为两个主要核,即黑质致密部 (SNc) 和腹侧被盖区 (VTA)。SNc 的 DA 神经元投射到背侧纹状体 (DS),而 VTA 的 DA 神经元投射到伏隔核 (NAc) 和皮质区域 (4)。此外,DS 和 NAc 可进一步细分为具有不同皮质和丘脑输入的解剖区域。例如,外侧 DS 接收来自运动皮质的大量输入,并大量参与运动学习、习惯行为和动作选择 (5–9)。相比之下,内侧 DS 接收来自体感皮层的输入,可以在塑造目标导向行为、强迫行为和技能学习方面发挥关键作用(10-12)。同样,NAc 可以细分为核心和外壳区域,具有不同的投射模式和输入,与动机行为、显着性和奖励处理有关(13-15)。DA 能够调节如此广泛和多样化的行为输出,至少部分归因于 DA 神经元亚群整合到仅涉及这些行为结果的子集的大脑回路中。与 DA 在调节这些回路中的关键作用一致,DA 信号失调被认为在许多疾病中起着关键作用,包括精神分裂症、抑郁症、物质使用障碍和帕金森病。
摘要:结构性磁共振成像(SMRI)研究表明,ASD患者的大脑结构异常,但是结构变化与社会通知问题之间的关系尚不清楚。本研究旨在通过基于体素的形态计量学(VBM)探索ASD儿童大脑中临床功能障碍的结构机制。筛选自闭症脑成像数据交换(Abide)数据库的T1结构图像后,有98名8-12岁儿童患有ASD的儿童与105名8-12岁儿童匹配典型发育(TD)。首先,本研究比较了两组之间的灰质体积(GMV)差异。然后,这项研究评估了ASD儿童中GMV与自闭症诊断观察计划(ADO)的通信和社交互动的小计分数之间的关系。研究发现,ASD中的异常大脑结构包括中脑,蓬蒂因,双侧海马,左parahampocampal回,左颞颞回,左颞叶,左右圆极,左中颞回和左上胸部上流回。此外,在ASD儿童中,ADO上的通信和社交互动的小计分数仅与左海马中的GMV显着相关,左海马,剩下的颞上回和左中间颞回。总而言之,ASD儿童的灰质结构异常,ASD儿童的临床功能障碍与特定区域的结构异常有关。
对阳性强化的行为反应改变是注意力缺陷多动障碍(ADHD)的核心赤字。自发性高血压大鼠(SHR)是一种先天动物菌株,表现出对增强的类似反应。在啮齿动物模型中,这种遗传确定的表型的存在允许对潜在的神经机制进行实验研究。在行为上,SHR表现出对立即增强的偏好,与其他大鼠菌株相比,相对于综合增强历史的个人实例的敏感性提高了增强实例的敏感性,增强梯度的延迟较高。SHR还显示出较少的动力来接近感觉刺激或提示,这些刺激或提示在重复的提示奖励配对后预测奖励。我们考虑了这些特征的潜在神经机制。众所周知,中脑多巴胺神经元最初是通过意想不到的奖励激活的,并逐渐将其反应转移到预测预测的提示上。这一发现启发了多巴胺转移赤字(DTD)假设,该假设预测了某些行为效应,这将是由于多巴胺反应从实际奖励到预测提示的提示而产生的。我们认为,DTD预测了SHR和ADHD个人中对增强的反应改变。这些对加强的反应反应反过来预测了多动症的核心症状。我们还建议,多巴胺转移程度的变化可能是与增强敏感性改变有关的人格维度的差异。这样做,我们强调了啮齿动物模型对人格研究的价值。
中脑乳突多巴胺能神经元的变性是帕金森氏病(PD)的病理标志。化合物的外围递送以阻止或减慢这种多巴胺能变性是一个关键的治疗目标。组蛋白脱乙酰基酶(HDAC)酶(关键表观遗传调节剂)在PD模型中表现出治疗前景。但是,由于有几类HDAC(Classi-IV),因此特定类别的抑制对于确保目标特异性很重要。在这里,我们检查了IIA类HDAC抑制剂TMP269的神经保护潜力。我们表明,TMP269在SH-SY5Y细胞和培养的大鼠腹脑中脑多巴胺能神经元中受到6-羟基多巴胺(6-OHDA)诱导的神经突损伤的影响。我们发现TMP269上调了SH-SY5Y细胞中神经营养因子BMP2和BMP-SMAD依赖性转录信号传导,这对于其针对6-OHDA诱导损伤的神经保护作用是必不可少的。此外,周围连续输注0.5 mg/kg的TMP269通过迷你渗透泵7天,减少了纹状体6-OHDA给药引起的前肢损伤。TMP269还保护了Nigra及其纹状体6-OHDA诱导的神经变性的底层中的多巴胺能神经元,并防止了6-OHDA在Vivo中的IBA1阳性微胶质细胞的数量增加,IBA1阳性微胶质细胞的数量增加。TMP269还防止了BMP2,PSMAD1/5和乙酰化组蛋白3水平的6-OHDA诱导的降低,并且它反转了6-OHDA诱导的核HDAC5在本次Nigra的多巴胺能神经元中核HDAC5的增加。这些数据增加了越来越多的证据体系,即IIA类特异性HDAC抑制剂可能是感兴趣的外围递送的药理学剂,其目的是在PD中进行神经保护。
帕金森病 (PD) 是第二大最常见的神经退行性疾病,其发病率随着年龄增长而上升,男性更容易患上该病 [1]。目前,PD 缺乏确切的诊断方法,因此临床诊断仍然是确诊的基本依据 [2,3]。医护人员根据主要症状进行临床诊断,并使用诊断标准排除其他可能的原因 [2,3]。PD 的典型运动症状包括静止性震颤、运动迟缓和僵硬 [4]。根据研究和统计方法的不同,估计全球每年 PD 发病率在十万人中 8.7 至 19 人之间 [5]。目前,全球 PD 患者超过 1000 万 [6]。研究人员普遍认为 PD 是一种受多种因素影响的复杂疾病。这些因素包括遗传因素(常染色体显性、常染色体隐性、易感基因)、环境因素(如接触碳氢化合物)、便秘、体力活动、吸烟(尼古丁)和咖啡因摄入量 [7-9]。该疾病被认为是由于黑质 (SN) 最初受损,特别是其致密区受损,导致 SN 活动减弱,同时基底神经节其他区域 [包括丘脑底核 (STN)] 抑制丧失,从而引起过度活动 [10]。PD 的典型病理变化包括中脑多巴胺能 (DAergic) 神经元的快速丢失以及脑内 α - 突触核蛋白聚集体形成的路易体数十年的积累 [9,11,12]。
