◆ financial institution (57 Institutions) • Government/Group Financial Institutions: Development Bank of Japan Inc., Shinkin Central Bank, The Norinchukin Bank • Mega bank: Mizuho Bank, Ltd., Sumitomo Mitsui Banking Corporation, MUFG Bank, Ltd. • Trust bank: Sumitomo Mitsui Trust Bank, Limited • Regional bank: The Hokkaido Bank, Ltd., North Pacific Bank,Ltd。,Aomori Michinoku Bank,Ltd。,Iwate,Iwate,Ltd. Towa Bank,Ltd。 Higashi-Nippon Bank,Limited,Yokohama,Ltd。,Hachijuni Bank,Ltd。,Nagano Bank,Ltd。,Yamanashi Chuo Bank,Ltd.,Daishi Hokuetsu Bank,Ltd. Hokuriku银行有限公司,Shiga Bank,Ltd。,Kiyo Bank,kiyo Bank,Chugoku Bank Ltd.,Tokushima Taisho Bank,Ltd. Ltd.,Saga Ltd.,Oita Bank,Ltd。,Miyazaki Bank,Ltd。,Miyazaki Taiyo Bank,Ltd.,Higo Bank,Ltd,Ltd,Kagoshima Bank,Ltd。•证券公司:Nomura Holdings,Inc.。•证券公司:Nomura Holdings,Inc.。
10 月 3 日,东京地铁株式会社(总部:东京都台东区,社长:山村昭义,以下简称“东京地铁”)与 ENEOS 可再生能源株式会社(总部:东京都港区,社长兼首席执行官:竹内和宏,以下简称“ERE”)签署了使用带蓄电池的太阳能发电站的虚拟购电协议(以下简称“PPA”),这在日本铁路公司中尚属首次。该协议由三井住友银行(总部:东京都千代田区,社长兼首席执行官:福留昭宏,以下简称“SMBC”)负责协调。根据该购电协议,电力用户东京地铁将直接从发电公司 ERE 购买环境价值(非 FIT,非化石燃料证书)。 ERE将安装输出功率与太阳能发电厂相同、总容量约为1.0MW的蓄电池,并利用其在蓄电池运营方面的独特专业知识*1,降低输出削减风险以确保稳定供电,为东京地铁提供相当于30年内发电量(约1.7GWh/年)的环境价值附加值*2。其结果,东京地铁每年的二氧化碳排放量预计将减少约663吨二氧化碳。这是日本铁路行业首次为配备蓄电池*3的太阳能发电厂完成虚拟PPA。东京地铁已制定了其长期环境目标“东京地铁零二氧化碳挑战2050”,涵盖东京地铁集团所有业务运营的二氧化碳排放,目标是到2030财年(与2013财年相比)减少50%,到2050财年实现净零排放。到目前为止,东京地铁已经推出了能效卓越的列车和对环境影响最小的设施。为了实现目标,东京地铁今后将进一步推动包括虚拟电力购买协议在内的各种可再生能源的使用,为创造一个令人安心的可持续发展社会做出贡献。三井住友正在认真应对气候变化和其他各种环境问题。通过我们的业务帮助解决这些问题,我们的目标是确保我们能够为子孙后代留下一个健康的环境。三井住友支持我们的客户为实现脱碳社会而做出的贡献。自 2012 年 ERE 成立以来,为了履行用可再生能源改变世界的使命,该公司开发和运营了可再生能源发电厂(太阳能、风能、生物质能等)。它将继续寻求减少公司二氧化碳排放的解决方案,并通过可再生能源发电业务促进可再生能源的更广泛使用。ERE 计划继续推进这些
Edward Andrade - 匿名捐赠者 - Jenisa Barr - Angela Bassill - Aspen Billiet - Shelly Billiet - TR Billy - Andrew Blaine - Lee Botelho - Brian Breitbarth - Raven Bridging - Susana & Duane Bullard - Matthew Carter Davidson - John A. Wagner & Charlene Iboshi - Natalie Chong - Leslie Chow -Ken Churches - Mark & Meio Clark - Joel Cooperson - Laurie Correa - Kyle Cosner - Shasta Crazy Cake Lady - Deb Crotteau Billiet - Shantell Cruz - James Dahlman - Shelby Daniel-Wayman - Angelia David - Elizabeth De Young - Michael & Gwendolyn Decoito Marlene DeCosta - Attila Denes - Ralph & Charla Devine - Norman Dionne - 匿名捐赠者 - Carolyn Droke - Paul Walp & Elizabeth Bryan Wesley Ervin - Debra Fenwick - Marian Fieldson - Dave Figueroa - Gary Fischer - Veronica Flores - Stephen Flowers - Aaron Frim - Bernadine Fujii - Melissa Gaspar - Robyn Gill - Martha Greenwell - Marielena Gutierrez Micah Haler - Martha Harden - Anne Harpham - John & Kathy Heffernan - Barbara Heintz - Douglas Hershey - Jason Hickman - Roland & Jan Higashi - Leslie Hittner - Claire Inman - Tehmina Islam - Ann Jamil - Dani Johnson - Brent Kakesako - Michael Kaminski - Laurie Kaneta - Barbara Kankainen - Marie-Ann Kelly - Michelle Kerr - Sonya Kincheloe - Karl & Kathi Kindi - Peter Koulogeorg - Gail Larson - Lisa Le - Lenley Lewi - Nautasha-Cheri Lyman - Denise Mackey - Lisa Malapit - David Mallen - Mana Silva - Suzette Lillinoe凯克阿拉尼·曼纳斯 - 卡门·马丁内斯 - 黛博拉·马蒂纽克 - 娜塔莉·马修斯 - 克里斯蒂·麦卡利 - 卡维卡·麦基格 - 维基·麦克马纳斯 - 约翰和苏·芒通 - 安德里亚·梅居尔 - 彼得和维克托琳·梅里曼 - 伊莱恩·梅森 - 彼得和菲比·米尔斯 - 劳伦·米纳托 - 朱莉·米切尔 - 大流士·蒙塞夫 - 埃德温和乔迪·蒙特尔 - 森上真希 - 米歇尔森田 - 贝特西·莫里根 - 韦恩和爱丽丝·莫里斯 - 凯瑟琳·穆斯 - 安妮·玛丽·墨菲 - Serina Naboa - 达里尔和爱丽丝长野 - 迪兰·中野 - 卡梅拉·纳基平 - 克里斯·尼达姆 - 吉娜·尼利 - 柯克·诺斯特罗姆 - 海伦·吴 - 凯瑟琳·西 - 安东尼·奥弗雷特 - 兰斯·奥哈纳 - 克莱德·奥野 - 斯塔福德·奥玛亚 - 马克·佩辛 - K & J帕金斯 - 希亚波·佩雷拉- 惠特尼·彼得森 - 休盖特·皮彻 - 卡罗尔·皮纳 - 约瑟夫·拉戈科斯 - 祖阿尔·伦基 - 凯瑟琳·威拉兹·罗兹约瑟芬·里奇 - 伊莱恩·罗斯 - 加里和卡普阿纳尼·罗斯福斯 - 桑德拉·坂口 - 西奥多·酒井 - 瑞秋·YM·佐藤 - 朱莉娅·谢弗 - 莎朗·舍勒 - 吉尔·希尔坎普 - 凯里·L·塞劳 - 玛丽莲·谢菲尔德 - 詹妮弗涩谷 - 莱拉尼·筱田 - 拉里·席尔瓦主教 - 内斯塔·苏亚雷斯 - 埃德温·索萨 - 史蒂文·斯塔丘斯基 - 布莱恩·L·斯坦利 - 克里斯塔·斯坦菲尔德 - 保罗和弗朗西斯·普雷斯顿三世 苏特·阿普丽尔·萨顿 - 迈克尔·斯沃德洛 - 图尼亚·西茨玛 - 凯拉·竹中 - 尼姆尔和香农·塔米米 - 雪莉·托莱多 - 拉维恩·托尔米 - 简·托里瑟 - 加林·泰纳 - 卡尔文马本 - 玛丽亚·韦德拉 - VFW - 玛丽安瓦格纳 - 约翰·沃德 - 露西尔·惠特克 - 约瑟芬·格兰德 & 威拉德·威尔士 特蕾莎·温 - 安德鲁·萨帕塔
补充方法 DNA 分离 使用自动 DNA 提取仪按照其协议(chemagic MSM I,PerkinElmer,美国马萨诸塞州沃尔瑟姆)从血液样本中分离 DNA。 使用试剂盒“EZ1&2 DNA Tissue”(Qiagen,德国希尔登)按照协议使用自动 DNA 提取仪 EZ1 Advanced XL(Qiagen)从羊膜细胞和绒毛中分离 DNA。 染色体微阵列(CMA) 使用 SureTaq DNA 标记试剂盒(Agilent,美国加利福尼亚州圣克拉拉)标记 DNA,并根据制造商的说明在 GenetiSure Cyto 4x180K CGH 微阵列(Agilent)上进行杂交。使用 InnoScan 910 AL 扫描仪(Innopsys,Carbonne,法国)扫描载玻片,并使用分析程序 Mapix(Innopsys)和 CytoGenomics 版本 5.1.2.1 和 5.3.0.14(Agilent)进行处理。使用参考基因组 GRCh38 评估数据。染色体分析和荧光原位杂交使用标准方法从肝素血样以及绒毛和羊膜细胞培养物中进行中期制备。简而言之,将来自肝素血样的细胞培养在含有植物血凝素作为有丝分裂原的 LymphoGrow 培养基(CytoGen,Sinn,德国)中,羊膜细胞培养在 Amniogrow plus 培养基(Cytogen,Sinn,德国)中,CVS 细胞培养在 Chang 培养基 D(Fujifilm,Minato,日本)中。固定后,将中期细胞滴到载玻片上,然后在 60 °C 下干燥过夜。使用核型分析系统 Ikaros(MetaSystems,德国阿尔特鲁斯海姆)通过 GTG 显带评估中期染色体的扩散情况。对于 FISH 分析,使用 Empire Genomics(美国纽约州布法罗)的探针 RP11-213E22-green 和 RP11-577D9-orange(7 号染色体)以及 RP11-358H10-green 和 RP11-241M19-orange(16 号染色体)。所有探针均按照制造商的说明使用。使用 Isis 数字成像系统(Metasystem Inc.,德国阿尔特鲁斯海姆)分析图像。 PCR 和测序 在适用的情况下,确认并进一步指定 OGM 分析中的断点,方法是使用 MinION 测序仪(Oxford Nanopore,英国牛津)进行第三代长距离测序,或使用 Hitachi 3500xL 基因分析仪(Thermo Fisher Scientific,美国马萨诸塞州沃尔瑟姆)进行 Sanger 测序。引物是根据 Dremsek et al., 2021 中描述的策略设计的。为了将引物定位得尽可能靠近预期的断点,OGM 数据和 CMA 数据都融入了其设计中。为了分析P1,进行了长距离PCR(连接点B/D*的扩增子:正向引物:5'-ggaggacaattttatcccccaggg-3'和反向引物:5'-gtgagccgtgagtttgccactat-3';连接点D*/B*的扩增子:正向引物:5'-tcgttgacggtgaaatgctacgt-3'和反向引物:5'-gcagataacggagtgaggaaggc-3')。PCR扩增后,使用引物 5' -acagctcactatagcagataggtgt- 3'、5' - ttgcatcaggaacatgtggacct- 3'、5' -ctggtcacaggcgcaaatcaaag- 3'、5' -gtcagcaaaggagagaagcagct- 3' 和 5' - gcaggttggctctttcccaagta- 3' 制备连接点 B/D* 的扩增子(大小为 4 kbp)进行 Sanger 测序。使用引物 5' -agggaaaagagatgtgtaaaatactgt- 3', 5' -agatgaggaagggcatctgac- 3', 5' -tcaagttgtcattgtggtgaatt- 3', 5' - cagatgccagcgctaagacgat- 3', 5' -aggttattacacacccctcct- 3', 5' -tgttcattatcactggccatcaga- 3', 5' -aaggggaaacctcctgctactct- 3', 5' - tgcacccactaacgtgtcatcta- 3', 5' -gggttggttccaagtctttgcta- 3', 5' -gctgaaactggatcccttcctta- 制备连接点 D*/B* 的扩增子(大小为 13 kbp),进行 Sanger 测序。 3'、5' -tgtagggacatggatgaaattgg- 3' 和 5' -ccaaacaccgcatattctcactc- 3'。为了分析 P3,进行了长距离 PCR(正向引物:5' -ttaccacgaaagagcaaacggtga- 3' 和反向引物:5' - aacgttattccttccagtcacccac- 3')。PCR 扩增后,根据制造商的方案(SQK -LSK109,Oxford Nanopore),制备 9 kbp 大小的扩增子以在 MinION 106D 流动槽上进行测序。对于家族检测,建立了 PCR,使用倒位特异性引物 5' -tgcctctgcttaataggaagttttgg- 3' 和 5' - cagccaataacgtgagtttaggagt- 3'(产生 1247 bp 扩增子),以及野生型引物 5' - cagccaataacgtgagtttaggagt- 3' 和 5' -ctgttgaaggacacaagctctggc- 3'(产生 778 bp 扩增子)(见 S.3)。MLPA 分析进行多重连接依赖性探针扩增 (MLPA) 以验证在 CMA 中检测到的增益并测试亲属的携带者状态。对于 MLPA,将 DNA 与探针杂交并根据制造商的说明进行扩增。使用 Hitachi 3500xL 基因分析仪(Thermo Fisher)对扩增的 DNA 进行片段分析,并使用 SeqPilot(JSI,德国埃滕海姆)分析程序处理数据。用于所呈现的临床病例的 MLPA 探针组是 P034-B2、P035-B1(P1)和 P216-C1(P3)(MRC-Holland,荷兰阿姆斯特丹)。5' -tgtagggacatggatgaaattgg- 3' 和 5' -ccaaacaccgcatattctcactc- 3'。为了分析 P3,进行了长距离 PCR(正向引物:5' -ttaccacgaaagagcaaacggtga- 3' 和反向引物:5' - aacgttattccttccagtcacccac- 3')。PCR 扩增后,根据制造商的方案(SQK -LSK109,Oxford Nanopore),制备 9 kbp 大小的扩增子以在 MinION 106D 流动池上进行测序。对于家族检测,建立了 PCR,使用倒位特异性引物 5' -tgcctctgcttaataggaagttttgg- 3' 和 5' - cagccaataacgtgagtttaggagt- 3'(产生 1247 bp 扩增子),以及野生型引物 5' - cagccaataacgtgagtttaggagt- 3' 和 5' -ctgttgaaggacacaagctctggc- 3'(产生 778 bp 扩增子)(见 S.3)。MLPA 分析进行多重连接依赖性探针扩增 (MLPA) 以验证在 CMA 中检测到的增益并测试亲属的携带者状态。对于 MLPA,将 DNA 与探针杂交并根据制造商的说明进行扩增。使用 Hitachi 3500xL 基因分析仪(Thermo Fisher)对扩增的 DNA 进行片段分析,并使用 SeqPilot(JSI,德国埃滕海姆)分析程序处理数据。用于所呈现的临床病例的 MLPA 探针组是 P034-B2、P035-B1(P1)和 P216-C1(P3)(MRC-Holland,荷兰阿姆斯特丹)。5' -tgtagggacatggatgaaattgg- 3' 和 5' -ccaaacaccgcatattctcactc- 3'。为了分析 P3,进行了长距离 PCR(正向引物:5' -ttaccacgaaagagcaaacggtga- 3' 和反向引物:5' - aacgttattccttccagtcacccac- 3')。PCR 扩增后,根据制造商的方案(SQK -LSK109,Oxford Nanopore),制备 9 kbp 大小的扩增子以在 MinION 106D 流动池上进行测序。对于家族检测,建立了 PCR,使用倒位特异性引物 5' -tgcctctgcttaataggaagttttgg- 3' 和 5' - cagccaataacgtgagtttaggagt- 3'(产生 1247 bp 扩增子),以及野生型引物 5' - cagccaataacgtgagtttaggagt- 3' 和 5' -ctgttgaaggacacaagctctggc- 3'(产生 778 bp 扩增子)(见 S.3)。MLPA 分析进行多重连接依赖性探针扩增 (MLPA) 以验证在 CMA 中检测到的增益并测试亲属的携带者状态。对于 MLPA,将 DNA 与探针杂交并根据制造商的说明进行扩增。使用 Hitachi 3500xL 基因分析仪(Thermo Fisher)对扩增的 DNA 进行片段分析,并使用 SeqPilot(JSI,德国埃滕海姆)分析程序处理数据。用于所呈现的临床病例的 MLPA 探针组是 P034-B2、P035-B1(P1)和 P216-C1(P3)(MRC-Holland,荷兰阿姆斯特丹)。