第一阶段环境场地评估:通过记录审查、访谈和现场检查确定公认的环境条件补救调查报告:确定采矿相关影响的性质和程度(2022 年 10 月 17 日获得 NDEP 批准)背景土壤报告:介绍背景阈值 (BTV) 或场地中自然产生的金属水平。金属含量等于或低于这些 BTV 的土壤被认为适合用作矿山废物的清洁覆盖物(2022 年 4 月 12 日获得 NDEP 批准)。石棉调查报告:描述石棉采样和结果(2022 年 5 月 17 日经 NDEP 批准) 重点可行性研究报告 – 土壤和矿山废物:评估场地的补救替代方案(2022 年 7 月 21 日经 NDEP 批准) 浸出分析报告:提供考虑从矿山废物中产生浸出物质的可能性的建模结果(2022 年 9 月 26 日经 NDEP 批准) 筛选级生态风险评估:评估场地受干扰部分当前处于危险中的植物或动物的风险(2022 年 10 月 25 日经 NDEP 批准) 筛选级人类健康风险评估(针对顺风火山单位):表明场地东侧火山山脊没有潜在的人类健康问题(2022 年 8 月 22 日经 NDEP 批准)
MFSP中的主要开垦激励工具是财务保障存款的放置(第4节),包括针对批准持有人无法实现已批准的计划填充的那些情况的特定押金。这些金融保险存款是一种持续的动力,以在运营寿命期间最大程度地减少负债。此外,通过确保批准持有人制定适当的环境管理计划,对这些计划和时间表的适当环境管理计划,并遵守这些计划和时间表,监管机构通过批准流程和对操作的持续监控在责任管理中起着不可或缺的作用。
在开采和运输煤炭的过程中,操作员在狭窄的矿井内可能会被移动机械撞击或抓到。解决此问题的方法是使用运输设备上的导航系统,使其跟随开采煤炭的机器。这实际上涉及基于传感器的机器对接。能够承受恶劣的矿井环境(包括灰尘、甲烷气体和水)的传感器起着关键作用。对采矿机的运动和经验机器特性进行计算机分析,以确定操作要求和空间限制,以确保将煤炭正确装入运输设备。这些数据用于选择传感系统。扫描激光系统和超声波传感器等各种技术经常用于其他应用,但被发现不可接受。然而,采用主动目标的近红外 (IR) 传感器满足要求。该传感器具有标称 75 EE 锥形视场和 0.1 至 18.0 m 的范围。对于单目标模式,在 3.56 米的距离处,标称范围精度为 4.3%。生成了校正算法,将误差降低至 0.6%。空气中的灰尘测试表明,在超过联邦法律允许的浓度(7.5 倍)的水平下,精度(最坏情况)下降不到 0.8%。该传感器可以跟踪多个活动目标,提供五个自由度 (DOF) 测量。使用四个目标,标称范围精度为 0.4%,无需校正算法。III. 当前操作场景 拖运系统跟随采矿机的制导系统在商业上不存在。这样的系统可以减少当前拖运采矿设备造成的死亡和伤害,并且是当前拖运控制的可行替代方案。
,由于勺子#208(电池BI-0013),勺子操作员称为电池团队。勺子被重置,移动了50英尺,然后再次停滞了。那时,闷烧,并且在电池BI -0013中注意到了火花。勺子操作员使用手持灭火器来确保不会发生进一步的热活动。然后,他打电话给主管和维护部门,来检查Scooptram。将勺子拖到5656商店,拆除电池并更换了电池。
本演示文稿包含有关Ramelius Resources Ltd(Ramelius)财务状况,运营结果,生产目标和其他符合各种风险和不确定性的事项的某些前瞻性陈述。实际结果,绩效或成就可能与那些前瞻性陈述所表示或暗示的结果显着不同。这种前瞻性陈述不能保证未来的绩效,涉及已知和未知的风险,不确定性和其他因素,这些风险超出了Ramelius的控制,这可能会导致实际结果与此处包含的前瞻性陈述中所表达的结果有很大差异。Ramelius对本演示文稿中的信息和陈述不提供任何保证。
在开采和运输煤炭的过程中,操作员在矿井狭窄的空间内可能会被移动机械撞击或抓住。解决此问题的方法是使用运输设备上的导航系统,以便它跟随开采煤炭的机器。这本质上涉及基于传感器的机器对接。能够在恶劣的矿井环境中生存的传感器起着关键作用,这些环境包括灰尘、甲烷气体和水。对采矿机的运动和经验机器特性进行计算机分析,以确定操作要求和空间限制,确保将煤炭正确装载到运输设备中。这些数据用于选择传感系统。扫描激光系统和超声波传感器等各种技术经常用于其他应用,但被发现不可接受。但是,采用主动目标的近红外 (IR) 传感器满足要求。该传感器具有标称 75 EE 锥形视场,范围为 0.1 至 18.0 m。 对于单目标模式,在距离 3.56 m 时,标称范围精度为 4.3%。 生成校正算法将误差降低至 0.6%。空气中的灰尘测试表明,在超过联邦法律允许的浓度(7.5 倍)的水平下,准确度(最坏情况)下降不到 0.8%。该传感器可以跟踪多个主动目标,提供五个自由度 (DOF) 测量。使用四个目标,标称范围精度为 0.4%,无需校正算法。III 的制导系统。当前操作场景 跟随采矿机器的运输系统在商业上不存在。这样的系统可以减少当前运输采矿设备造成的死亡和伤害,并且是当前运输控制的可行替代方案。
本报告借鉴了许多个人的专业知识、建议和见解,包括行业领导者、研究人员和主题专家。沃伦中心非常感谢以下国际铜业协会澳大利亚分会会员和行业主题专家的采访贡献。Alan Broadfoot 教授 纽卡斯尔大学纽卡斯尔能源与资源研究所所长 Adrian Beer METS Ignited Australia Ltd 首席执行官 Jacqui Coombes 博士 Amira Global 董事总经理兼首席执行官 Christopher Goodes 博士 墨尔本大学企业教授 Christine Gibb-Stewart Austmine 首席执行官 Jacqui McGill AO C-Suite 执行和非执行董事 Jacqui McGill Consulting Matt O’Neill 嘉能可 Mt Isa Mines 首席运营官 Helene Bradley 英美资源集团技术与可持续发展传播主管 Martin Smith 必和必拓奥林匹克坝健康与安全主管 Hal Stillman 美国国际铜业协会 (ICA) 技术开发与转让主任 David Thurstun 先生 Ok Tedi Mining Limited 商业战略经理 Osvaldo Urzua 博士 国际顾问和独立采矿专家
在开采和运输煤炭的过程中,操作员在矿井狭小的空间内可能会被移动机械撞击或抓到。解决此问题的方法是使用运输设备上的导航系统,使其跟随开采煤炭的机器。这实际上涉及基于传感器的机器对接。能够承受恶劣的矿井环境(包括灰尘、甲烷气体和水)的传感器起着关键作用。对采矿机的运动和经验机器特性进行计算机分析,以确定操作要求和空间限制,确保将煤炭正确装入运输设备。这些数据用于选择传感系统。扫描激光系统和超声波传感器等各种技术经常用于其他应用,但被发现不可接受。然而,采用主动目标的近红外 (IR) 传感器满足要求。该传感器具有标称 75 EE 锥形视场和 0.1 至 18.0 米的范围。对于单目标模式,在 3.56 米的距离处,标称范围精度为 4.3%。生成校正算法将误差降低至 0.6%。空气尘埃测试表明,在超过联邦法律允许的浓度水平(7.5 倍)时,精度(最坏情况)下降不到 0.8%。该传感器可以跟踪多个活动目标,提供五个自由度 (DOF) 测量。使用四个目标,标称范围精度
独特的防区外方法 - 降低风险并优化船员和船舶安全 Exail 通过提供独特的防区外方法在推动传统战争界限方面发挥着重要作用,使海军能够保护船员和船舶,使他们远离雷区。同时,这些无与伦比的海上水雷对抗 (MMCM) 解决方案通过并行任务提高了水雷作战的效率和速度——可以同时发射和管理多架无人机以同时覆盖多个区域,从而节省大量时间和资源。Exail 利用在海军无人机领域 80 年的专业知识,提供定制工具箱 UMIS™,包括空中、水面和水下自主和遥控车辆。根据海军的实时任务需求,无人机可以承载各种有效载荷。