在健康的人类成年人中观察到的抽象生理镜活动(PMA)描述了单侧肢体运动过程中对侧同源肌肉的非自愿共激活。在这里,我们使用神经肌肉测量值(肌电图; EMG)提供了新的证据,即在通知人类参与者(10名男性,10个女性)有关其存在并通过标准的协议的基本理解的固有手部肌肉的单侧等轴测收缩期间,PMA的幅度可以自愿抑制。重要的是,尽管在任务执行过程中没有任何在线反馈,并且没有特殊培训,但要求在参与pant的情况下立即观察到PMA的显着抑制。此外,我们观察到PMA的下降特别伴随着用脑电图(EEG)记录的相对额叶D功率的折痕。相关性分析进一步促进了一旦参与者开始抑制,PMA的个体振幅与额叶D功率之间的逆关联。在一起,这些结果表明,额叶区域的D功率可能反映了执行过程,在这种情况下,在这种情况下为PMA施加抑制性控制。我们的结果为开发与非自愿运动的神经居住相关的治疗应用提供了一个初始参考点,这可以通过在老年人中观察到的PMA实现,然后才能完全表现出不良的明显运动模式。
本文主要讨论可变形镜 (DM) 的要求定义、流程和验证。这些要求源自一组真实的太空任务应用。镜子的变形由单压电陶瓷致动器以单晶片配置执行。最终开发的 DM 能够在直径为 50 毫米的清晰光学孔径上产生行程为几十微米的泽尔尼克模式。它成功通过了全面的环境鉴定活动,包括热循环、冲击和振动测试,以及质子和 γ 射线辐射。在 100 K 至 300 K 的温度范围内进行了热测试和性能测试。此外,DM 经受住了所有振动(随机 17.8 g RMS 和正弦)和冲击(300 g)测试。因此,之前研究中发现的所有关键问题都已成功克服。
新加坡(2023年11月23日) - 11月25日在Artscience博物馆停靠:红色镜子将通过12,000年的文化,艺术,历史和科学在远古时代到今天的火星,在这一世界外探险中启动游客。这是红色星球上最全面的历史和文化展览,登陆新加坡,其中包含300多个物体,包括重要的历史文物,稀有的科学手稿,电影,当代艺术品,甚至是正宗的火星陨石。Mars曾经是千年来迷恋的主题,因此捕捉了人类的想象力,就像其他星球一样。来自世界各地的太空机构正在积极探索火星,目前在地球上进行了三个活跃的漫游者任务,并在地平线上进行了几项载人太空任务。火星:红色的镜子通过将开创性的科学家,现代专家,电影制片人,作家和当代艺术家的叙述汇集在一起,反映了人类与红色星球的持久联系,他们一直在各种文化中探索火星。MARS于2021年首次在西班牙出现:红色镜子由巴塞罗那当代文化中心(CCCB)的Juan Insua策划。这次展览在Artscience博物馆的亚洲首映将其重点转移到了亚洲 - 从中国古代,印度和日本展示了火星的描述,即强调了开创性的亚洲天文学家的作品,并洞悉了东南亚流行文化火星的刻画。强调亚洲提供了展览还展示了来自亚洲各地的太空机构如何在科学上探索火星,包括新加坡自己的太空学院和日本航空航天勘探局(JAXA)。
镜像检测对于避免在计算机视觉任务中对反射对象的虚假识别具有重要意义。iSting镜像检测框架通常遵循超级视为的设置,这在很大程度上取决于高质量的标签,并且概括不良。为了解决这个问题,我们改为提出了第一个弱监督的镜像检测框架 - 还提供了第一个基于涂鸦的镜像数据集。具体来说,我们重新标记10,158张图像,其中大多数标记的像素比小于0.01,仅需大约8秒即可标记。考虑到镜像区域通常显示出很大的尺度变化,并且也不规则且被阻塞,从而导致不完整或过度检测的问题,因此我们提供了局部全球特征增强(LGFE)模块,以充分捕获上下文和细节。此外,很难使用涂鸦注释获得基本的镜像结构,并且未强调前景(镜像)和背景(镜子)和背景(非摩尔)特征之间的区别。因此,我们提出了一个前景感知的面具(FAMA),将镜面边缘和语义效果整合起来,以完成镜像区域并抑制背景的影响。最后,为了提高网络的鲁棒性,我们提出了原型对比度损失(PCL),以学习跨图像的更通用的前景特征。实验实验表明,我们的网络表现优于相关的最新监督方法,甚至超过一些完全监督的方法。数据集和代码可在https://github.com/winter-flow/wsmd上找到。
瑞士日内瓦大学的瑞士情感科学中心; B瑞士日内瓦大学心理学系的情绪启发和表达研究(E3LAB)的B实验室; c食品和人类行为实验室,心理学学院,瑞士布里格的瑞士苏伊斯联合会; D大学Grenoble-Alpes,Sens,Grenoble,法国; E人与进化生物学科,生物科学系,加利福尼亚州南加州大学; F习惯应用和理论小组,萨里大学心理学系,英国吉尔福德; G美国奥本的奥本大学运动机能学学校; h美国奥本,奥本大学神经科学中心;我的健康行为动机实验室,澳大利亚罗克汉普顿中央大学阿普尔顿研究所; J匈牙利Győr的SzéchenyiIstván大学卫生与体育科学学院; K法国布鲁兹的Ecole NormaleSupérieureRennes的运动科学与体育系; l实验室VIPS2,雷恩大学,雷恩,法国雷恩,
患者和方法:在2017年11月至2018年5月之间,手中包括26例外周神经损伤的患者。将患者随机分配到镜像组(n = 14)和对照组(n = 12)组。两组在我们的诊所接受常规疗法,在工作日连续六个星期,每天45分钟。镜子组又接受了10-15分钟的视觉镜疗法。视觉模拟量表(VAS),Duruöz手指数,手臂,肩膀和手的快速残疾,Jebsen手部功能测试和Semmes-Weinstein单丝测试用于评估基线时和治疗后患者的疼痛,手部功能和感觉。用测功机测量患者的手束强度。
DMTR 工作组由 NASA 的 ExEP 于 2023 年 2 月发起,旨在尽早开始为空间日冕仪最具挑战性的组件——可变形镜系统提供技术路线图。以下是取得的成就:• 完成了“DM 性能目标的初步确定”,可用作供应商的临时要求,直到未来的飞行任务可以确定它们。它们涵盖:(1) 执行器数量、(2) 执行器稳定性、(3) 执行器分辨率、(4) 执行器行程、(5) 执行器螺距、(6) 残余 WFE、(7) 执行器产量和 (8) 飞行路径• 更新了 2022 年 DM 供应商调查,确定了三个有前途的候选供应商——AOA Xinetics 的电致伸缩 DM、Boston Micromachines 的静电 MEMS DM 以及法国公司 ALPAO 及其磁性 DM。 • 访问了所有三家 DM 供应商的制造工厂 • 收到了三大供应商对临时需求文件的初步回应和反馈。
引用:VerónicaBenavidezMagister。“”学习镜:镜像神经元如何塑造我们的学习能力”。ACTA科学神经病学7.4(2024):25-38。
简介在2017年早些时候,我们在Uthaim线程中讨论了当前传送带放大器如何也可以用作IV转换器[1]。Uthaim利用了东芝JFET输入对,偏向于8mA。这些JFET当然很难获得。自然的问题是,我们如何用BJT替换JFET。偶然地遇到了Toshiyuki Beppu [2,2a]的1999年跨阻力IV电路。虽然这本质上是一个OPAMP IV电路,但输入阶段使用电流镜的原理显示了互补BJT对的简单偏置电路。也有John Broskie [2B]在2012年发表的类似巡回赛。而不是根据BEPPU使用第二电流放大阶段,然后用NFB关闭环路,而是只能将Uthaim的其余部分用于IV转换,包括输出缓冲区。当然,IV转换器不需要像Uthaim中的强大输出缓冲区。一个简单的A类BJT发射极追随者足以驱动下游阶段的典型载荷。整个电路由不超过3对互补电流镜,还有10个电阻组成。在Internet上进行了一些进一步的搜索,揭示了与上述[3,4]的非常相似的电路。实际上,我们在2011年也发表了类似的内容[5]。正如Jan Didden所说,您可以将其视为开放循环和A类简化的AD844(或平行的8倍)。那么,为什么现在要恢复呢?当时,JFET含量丰富,几乎没有HFE的单片双BJT可供选择(2SC3381BL / 2SA1349BL)。今天的情况是完全逆转的,并且像Nexen这样的SMD组件建立小型IV模块的想法相当吸引人[6]。Rutgers的确报告了相对较差(模拟)的性能,即使在低输出水平为0.25V的情况下,H3也为0.04%。尽管他选择的晶体管具有很低的电容,但HFE也很低(〜80)。通过选择高HFE(〜400)的Toshiba SMD低噪声双晶体管,我们的模拟
反映神经元被认为是与他人建立联系的能力,而不是有意识的水平,通过模仿,理解和提供帮助来学习;共情。这些连接不是直接的,而是根据一个人的经验进行介导的[1]。镜像神经元在儿童时期很重要,它们对于学习和获取新技能非常重要。他们参与思考,计划,控制和记忆。如果孩子观察到动作,镜像神经元将激活并形成新的神经联系,就好像他或她亲自进行了动作一样。镜像神经元的有效功能可在任何领域,更大的情绪智力和更高的同理心[1]带来出色的发展。