从传感器材料或常规真空空间的质量降低。此外,侧视镜保护了晶体免受电压脉冲上升和下降期间MITL直接侧向电子轰击的可能性,晶体内部的高内部场并未导致介电击穿,并且没有证据表明表面上有任何电弧。光纤位于真空腔室外,远离辐射源,因此辐射变暗不会影响光纤内部的光。Niobate锂的确有一个显着的
建议理事会收到报告 PED24049 附录“A”中的货物运输战略,并使用该战略和其中包含的行动来指导工作并为经济发展司的未来工作计划提供信息。 执行摘要 2023 年第二季度,麦克马斯特交通与物流研究所(麦克马斯特大学一家致力于交通和物流多学科应用研究的世界一流研究所)获得了制定汉密尔顿市货物运输战略的合同。 2021 年,MITL 在加拿大交通部的支持下与汉密尔顿奥沙瓦港务局建立合作伙伴关系,成立了 Fluid Intelligence,这是一种数据分析资源,可在货物运输方面提供见解和解决方案。该战略融合了 Fluid Intelligence 的专业知识和贡献。该战略描述了交通运输行业的现状,重点介绍了各种模式:空运、海运、地面和铁路。该战略包括对交通运输部门的全面定性和定量概述,既包含在战略中(报告 PED24049 的附录“A”),也作为一份独立的研究文件
首字母缩略词和缩写列表 3-D 三维 ACSS 航空通信和监视系统 ADS-B 自动相关监视-广播 AESA 有源电子扫描阵列 AFRL 空军研究实验室 AGV 自动导引车 AIM 航空信息手册 ASC 航空系统中心 ASOS 自动地面观测系统 ATD 先进技术演示 ATDSS 空中交通检测传感器系统 ATIS 自动终端信息服务 ATTAS 先进技术测试飞机系统 AWOS 自动气象观测系统 BHO 黑热物体 C 2 指挥控制 CA 防撞 CFR 联邦法规 CGAR 通用航空研究卓越中心 CAB 民用航空委员会 COA 授权或豁免证书 COTS 商用现货 DAA 检测和避让 DARPA 国防高级研究计划局 DoD 国防部 DRA 国防研究协会 DSA 检测、感知和避让 EH101 Elicottero 直升机Industries-01 EMD 基本运动探测器 EO 电光 FAA 美国联邦航空管理局 FOR 关注领域 GPS 全球定位系统 IAW 符合 ICAO 国际民用航空组织 IFR 仪表飞行规则 IMC 仪表气象条件 IR 红外线 LOAM ® 激光避障与监控 MAGICC 多智能体智能协调与控制 (杨百翰大学) M 2 CAS 多模式防撞系统 MITL 人在回路 MWS 导弹预警系统
可以直接从腔体输出非常快的高电流和高电压脉冲,而无需任何复杂的脉冲形成和脉冲压缩网络。由于输出脉冲上升时间和宽度可以轻松定制(脉冲成形)以满足特定应用需求,因此负载可以是真空电子二极管、z 型线阵列、气体喷射、衬套、等熵压缩负载 (ICE)(用于研究非常高磁场下的材料行为)或聚变能 (IFE) 目标。根据桑迪亚实验室的合同,俄罗斯托木斯克的高电流电子研究所 (HCEI) 设计和建造了十个 1-MA LTD 腔体。这些腔体最初设计为在真空或磁绝缘传输线 (MITL) 电压加法器配置中运行。在这种模式下成功运行后,我们正在逐步对其进行修改,使其能够在去离子水绝缘电压加法器中组装运行。特别注意通过过滤进行清洁,去除溶解和自由水,并除去腔体中的油。除了去离子和去除气泡外,还对电压加法器的水进行了类似的处理。为此,设计和建造了两个连续运行的水和油再循环系统。最重要的 LTD 驱动器应用之一 (IFE) 将需要不间断地进行数万次射击。目前,我们正在运行两个经过修改的腔体,这些腔体具有更坚固的组件和专门设计的
3 NNSA,华盛顿特区,美国 LTD 技术方法可产生非常紧凑的设备,可直接从腔体输出非常快的高电流和高电压脉冲,而无需任何复杂的脉冲形成和脉冲压缩网络。由于输出脉冲上升时间和宽度可以轻松定制(脉冲整形)以满足特定应用需求,因此负载可能是真空电子二极管、z 型收缩线阵列、气体喷射器、衬套、等熵压缩负载(ICE)以研究材料在非常高的磁场下的行为,或聚变能(IFE)目标。根据桑迪亚实验室的合同,俄罗斯托木斯克的高电流电子研究所(HCEI)设计和建造了十个 1-MA LTD 腔体。这些腔体最初设计用于在真空或磁绝缘传输线(MITL)电压加法器配置中运行。在这种模式下成功运行后,我们正在逐步对其进行修改,使其能够在去离子水绝缘电压加法器中组装运行。特别注意通过过滤进行清洁,去除溶解和自由水,并除去腔体油中的空气。除了去离子和去除气泡外,还对电压加法器的水进行了类似的处理。为此,设计和建造了两个连续运行的水和油再循环系统。最重要的 LTD 驱动器应用之一 (IFE) 将需要不间断地进行数万次射击。目前,我们正在运行两个经过修改的腔体,这些腔体具有更坚固的组件,并且专门为水而设计
3 NNSA,华盛顿特区,美国 LTD 技术方法可产生非常紧凑的设备,可直接从腔体输出非常快的高电流和高电压脉冲,而无需任何复杂的脉冲形成和脉冲压缩网络。由于输出脉冲上升时间和宽度可以轻松定制(脉冲整形)以满足特定应用需求,因此负载可能是真空电子二极管、z 型收缩线阵列、气体喷射器、衬套、等熵压缩负载(ICE)以研究材料在非常高的磁场下的行为,或聚变能(IFE)目标。根据桑迪亚实验室的合同,俄罗斯托木斯克的高电流电子研究所(HCEI)设计和建造了十个 1-MA LTD 腔体。这些腔体最初设计用于在真空或磁绝缘传输线(MITL)电压加法器配置中运行。在这种模式下成功运行后,我们正在逐步对其进行修改,使其能够在去离子水绝缘电压加法器中组装运行。特别注意通过过滤进行清洁,去除溶解和自由水,并除去腔体油中的空气。除了去离子和去除气泡外,还对电压加法器的水进行了类似的处理。为此,设计和建造了两个连续运行的水和油再循环系统。最重要的 LTD 驱动器应用之一 (IFE) 将需要不间断地进行数万次射击。目前,我们正在运行两个经过修改的腔体,这些腔体具有更坚固的组件,并且专门为水而设计
3 NNSA,华盛顿特区,美国 LTD 技术方法可产生非常紧凑的设备,可直接从腔体输出非常快的高电流和高电压脉冲,而无需任何复杂的脉冲形成和脉冲压缩网络。由于输出脉冲上升时间和宽度可以轻松定制(脉冲整形)以满足特定应用需求,因此负载可能是真空电子二极管、z 型收缩线阵列、气体喷射器、衬套、等熵压缩负载(ICE)以研究材料在非常高的磁场下的行为,或聚变能(IFE)目标。根据桑迪亚实验室的合同,俄罗斯托木斯克的高电流电子研究所(HCEI)设计和建造了十个 1-MA LTD 腔体。这些腔体最初设计用于在真空或磁绝缘传输线(MITL)电压加法器配置中运行。在这种模式下成功运行后,我们正在逐步对其进行修改,使其能够在去离子水绝缘电压加法器中组装运行。特别注意通过过滤进行清洁,去除溶解和自由水,并除去腔体油中的空气。除了去离子和去除气泡外,还对电压加法器的水进行了类似的处理。为此,设计和建造了两个连续运行的水和油再循环系统。最重要的 LTD 驱动器应用之一 (IFE) 将需要不间断地进行数万次射击。目前,我们正在运行两个经过修改的腔体,这些腔体具有更坚固的组件,并且专门为水而设计
3 NNSA,华盛顿特区,美国 LTD 技术方法可产生非常紧凑的设备,可直接从腔体输出非常快的高电流和高电压脉冲,而无需任何复杂的脉冲形成和脉冲压缩网络。由于输出脉冲上升时间和宽度可以轻松定制(脉冲整形)以满足特定应用需求,因此负载可能是真空电子二极管、z 型收缩线阵列、气体喷射器、衬套、等熵压缩负载(ICE)以研究材料在非常高的磁场下的行为,或聚变能(IFE)目标。根据桑迪亚实验室的合同,俄罗斯托木斯克的高电流电子研究所(HCEI)设计和建造了十个 1-MA LTD 腔体。这些腔体最初设计用于在真空或磁绝缘传输线(MITL)电压加法器配置中运行。在这种模式下成功运行后,我们正在逐步对其进行修改,使其能够在去离子水绝缘电压加法器中组装运行。特别注意通过过滤进行清洁,去除溶解和自由水,并除去腔体油中的空气。除了去离子和去除气泡外,还对电压加法器的水进行了类似的处理。为此,设计和建造了两个连续运行的水和油再循环系统。最重要的 LTD 驱动器应用之一 (IFE) 将需要不间断地进行数万次射击。目前,我们正在运行两个经过修改的腔体,这些腔体具有更坚固的组件,并且专门为水而设计